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Resources—such as files, locks, and memory cells—are stateful objects that must be used according to specific
protocols during program execution. These protocols can be formally expressed as temporal properties over
event traces that represent resource usage, incorporating both safety and liveness requirements. Existing
verification approaches to resource usage analysis ignore liveness requirements of resource usage. As a result,
they are inadequate for verifying the resource usage correctness of divergent or indefinitely running programs,
such as server-side programs or interactive applications.

To address this gap, we define the general problem of temporal resource usage analysis in a higher-order
language with recursive functions and dynamically allocated resources. As a solution to this problem, we
propose a temporal resource type system. A main novelty of our type system is a resettable timer mechanism
that provides a progressivity guarantee for temporal resource usage even in the divergent program execution.
We demonstrate the usefulness of our type system by examples, and prove its soundness. Our proof of the
soundness is based on a logical relation that captures the progressive nature of divergent computations.

1 Introduction
1.1 Background: Correct Use of Resources

Programs use a variety of resources—such as heap memory, files, network sockets, and locks—for
efficiency, interaction with the external environment, or to access special functionalities of the
underlying operating system. These resources are stateful objects that must be used in a valid
manner. Different types of resources may require specific usage protocols, including constraints on
the order, reachability, and multiplicity of operations on the resources. For example, a file handle
must be opened before reading from or writing to it and a memory block may be freed at most once.
These requirements on file and memory resources are safety properties, which require that resource
operations are only applied to resources in some appropriate states (or, “nothing bad happens to
resources”). The task of verifying such safety properties about resource usage is called resource
usage analysis problem [22] and has been studied actively for decades [2, 7, 17, 19, 22, 43, 50].

However, safety is not the only criterion for correct use of resources: another important criterion
is liveness, which requires resources to eventually reach some desired states (or, “something good
will eventually happen to resources”). For instance, consider the program (written in ML-like
syntax) in Figure 1 that manipulates file and lock resources. Its functionality is to get a path name
from the user interactively, open it as an input file, read from the file, and write the contents to
a lock-protected log. The program dynamically allocates file resources and may run indefinitely
(it terminates only when the user types "EXIT"). For such a potentially diverging program to be
correct, it is desired to ensure liveness properties of resources—not only that every file is safely
used, but also that the opened files are eventually closed to avoid resource leaks, and a lock that has
been acquired should eventually be released so that other threads can enter the critical sections.’
Although liveness properties for terminating programs can be reformulated as safety ones, ensuring
liveness properties for diverging or indefinitely running programs, such as server-side programs
and interactive applications, poses a distinct challenge [5, 39, 57].

IThe formal system presented in the paper only focuses on single-threaded programs, and the support for multi-threaded
programs is left as future work.
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1 let rec main_loop (log_lock : lock) : unit =

2 let path = input () in

3 if path = "EXIT" then () else (

4 let input_file = open path in

5 let content = read input_file in

6 close input_file;

7 acquire log_lock;

8 ... (x write content to the lock-protected log *)
9 release log_lock;

10 main_loop log_lock)

1 let main () =

12 let log_lock = new_lock () in main_loop log_lock

Fig. 1. An Interactive File-Logger (Valid).

A unified view for resource usage specifications—including both safety and liveness properties—
is obtained by formulating them as linear-time temporal properties (or temporal properties for
short) [3, 41], that is, properties on the (potentially infinite) traces that represent the sequences
of effectful operations performed on resources. For example, using the mixed form of regular and
w-regular expressions, valid usage traces of files and locks may be formally specified as:

def .
¥ri1e = open-(read|write)*-close

def . .
Yok = (acquire-release)* | (acquire - release)® .

Here, given expressions ¥ and ¥’ in the mixed form, ¥ - ¥’ (resp. ¥ | ¥’) denotes the concatenation
(resp. union) of traces in ¥ and ¥/, ¥* denotes any finite number of repetitions of traces in ¥, and
Y denotes any infinite number of repetitions of traces in ¥. The expression ¥s;i1. specifies traces
that start with opening a file, followed by any finite number of reading or writing, and end with
closing the file. Thus, files used as specified by ¥f;1e are read and written only when they have
been opened but have not been closed (the safety property), and they are closed eventually when
they have been opened (the liveness property). Similarly, the expression ¥1,ck specifies traces that
repeat (finitely or infinitely) the pattern of acquiring a lock and then releasing it finally. Therefore,
locks following this specification are acquired before being released (the safety property) and are
eventually released once acquired (the liveness property). Traces on locks may be infinite because
locks can be acquired again and again after being released. The program shown in Figure 1 satisfies
these specifications for files and locks. However, if the close operation were moved after the
recursive call to main_loop, the file specification would no longer be satisfied, since the recursive
call might not return and then close would not be invoked. Note that the checking problem of
safety properties essentially aims to verify that a generated trace is a prefix of some trace in the
specification. When taking liveness properties into account, we have to check if the generated full
trace exactly matches some trace in the specification.”

2This is more general than prefix checking. If one is only interested in safety properties of, e.g., files, it suffices to check that
the generated trace exactly matches some trace in the prefix set of Wjje.
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1.2 Our Work

In this paper, we focus on type-based verification for temporal properties of resources in a higher-
order language with general recursive functions and dynamically allocated resources. For this goal,
we make the following contributions.

Contribution 1: A formalization of the temporal resource usage analysis problem (Section 2). We
formulate the verification problem we are interested in as the temporal resource usage analysis
problem, or temporal usage analysis for short, which generalizes the resource usage analysis problem
proposed by Igarashi and Kobayashi [22] to consider liveness properties of resources. We classify
resources by their lifetimes (finite, indefinite, and infinite) and provide a correctness criterion for
each category. Crucially, our formulation of the problem establishes correctness criteria that address
liveness properties of resources in diverging programs.

Contribution 2: A temporal resource type system (Sections 3 and 4). We introduce a type system,
which we call a temporal resource type system, for temporal usage analysis. The key challenge for
that is threefold: resource aliasing, progressivity guarantee, and termination analysis.

The aliasing problem is that the same resource may be referenced by different names. Its presence
together with mutability hinders program reasoning. This is common in programming with stateful
objects (especially, in heap-manipulating programs), and many type-based approaches have been
proposed to address it [10, 25, 32, 34, 37, 49, 54]. In this paper, for its simplicity and generality, we
employ uniqueness typing [6, 16, 48] and guarantees that every resource can be referenced in a
unique way. We discuss other possible mechanisms to address the aliasing problem in Section 6.

The progressivity guarantee concerns the problem of ensuring that the usage of resources
eventually leads them to some desired states. Similar issues arise in reasoning about infinite data
objects [4, 13, 33] and in liveness verification for a global trace [45] (which records all effectful
operations during the program execution—unlike our setting of separate per-resource traces). Our
key idea for ensuring progressivity in resource usage lies in the type representation of resources:
we enrich resource types with resettable timers, which are a ghost mechanism that guarantees that
resources will eventually perform some operations to reach the desired states.

The need for termination analysis stems from the subtle phenomenon of implicit discarding of
resources. That is, resources that are not accessible from a diverging sub-computation are essentially
discarded. In this case, a sound type system must ensure that these unused resources have reached
the desired states just before the execution of the sub-computation starts. To precisely detect this
phenomenon, we incorporate user-provided termination information into the type system.

In the literature, numerous type systems for ensuring safety properties of resources [1, 2, 7,
17, 19, 22, 23, 43, 50], as well as type-and-effect systems for temporal properties over global
traces [21, 28, 36, 44, 45] have been proposed, but, to the best of our knowledge, our type system
is the first to address temporal usage analysis for higher-order programs. We provide a detailed
comparison with these prior works, as well as other approaches to temporal verification, in Section 7.

Contribution 3: Soundness of the temporal resource type system (Section 5). We prove soundness of
our type system with respect to temporal usage analysis. The soundness for the finite- and indefinite
lifetime criteria follows from standard syntactic type safety since they are safety properties. In
contrast, the soundness for the infinite-lifetime criterion is more intricate as it essentially requires
ensuring a liveness property. We prove the latter soundness using a logical relation that formalizes
the progressive nature of divergent computations.

The organization of the paper. Section 2 formalizes the temporal usage analysis problem. Section 3
gives an overview of our type system, along with the technical challenges in its design. The
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Variables x, f Locations ¢ Events a € A
Integers n € Z Arithmetic Operations & == +|— |-

Constants ¢ == n|()|--- Patterns P == x| ()| (P, P,)

Values vu=x|c|rest| (v, ) |Ax.e|recfx.e

Expressions e = v| v & | letP = ine; | ifo vthene; else e, | vy v, |
new,, | accy(v) | drop(v)

Fig. 2. Syntax of Ares.

formalization and soundness of the type system are presented in Sections 4 and 5, respectively. We
discuss the limitations of our current type system and outline future directions in Section 6. We
also situate our work within the existing literature in Section 7.

In the paper, we only state the main meta-theoretic properties and proof sketches of our type
system. The full proofs and auxiliary definitions can be found in the supplementary material.

2 Temporal Resource Usage Analysis Problem

In this section, we formally define the problem of temporal resource usage analysis. We first
introduce a standard higher-order language A,.s with dynamically allocated resources. We then
classify resources based on their lifetime in the resource heap during an execution, and formalize
the temporal resource usage analysis problem using a correctness criterion for each class.

2.1 Language Ayes

2.1.1 Syntax. Our language A; is a fine-grain call-by-value A-calculus [31] extended with resource
manipulation. Its syntax is presented in Figure 2. It mostly follows the language used in resource
usage analysis [22, 23] except for deallocation constructs, which are newly added for explicit
resource management.

The syntax of A5 consists of values v and expressions e. A value is a variable x, constant
¢, resource res £ allocated at a location ¢, pair (v;, v), A-abstraction Ax. e, or recursive function
rec f x. e. We separate A-abstractions and recursive functions to introduce certain specific typing
rules for recursive functions in Section 4, but semantically they can be unified by considering
Ax. e as an abbreviation of rec f x. e for some f that does not occur free in the expression e. An
expression is: a value; an arithmetic operation call; a let-expression let P = e; in e, with pattern
P for deconstructing the value of the expression e;; an if-expression if0 vthen e else e;, which
branches into subexpressions e; and e, depending on whether the integer value v is zero; a function
application v; vy; or an application of a certain resource operation, i.e., resource allocation new,,
access accy(v), or deallocation drop(v).

. . . def .
In the rest of this paper, we use the following syntactic sugars: acc,(x); e = let x = accy(x) ine
for single-threaded resource access (acc returns the same resource as the argument, as explained in

detail shortly); and ey; e, e et () = e, in e, for sequential composition (if e; # acc,(x)).> Also, we
often place a non-value expression at the position where a value is expected. In such a case, we
assume that let constructs are inserted appropriately. For example, a function application e e, is
regarded as let x = e; in let y = e, in x y implicitly if neither e; nor e; is a value.

A resource allocation newy, is accompanied by a temporal specification ¥, which should be
assumed to be provided by the user and prescribes valid usage traces of the allocated resource. We

. . . . def .
3Also for the reset™ (x) construct introduced later in Section 4, we write reset™(x); e ‘= let x = reset™(x) ine.
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write [¥] for the set of such valid traces. Although our type system assumes temporal specifications
in a certain specific syntactic form (see Section 4 for detail), the semantics relies only on the trace
sets associated with them. The allocated resource is consumed by resource access constructs.

A resource access acc,(v) takes a resource v and returns the same resource.* The event a is a
symbol expressing the name of a certain resource operation, such as open, read, write, and close
for files, and acquire and release for locks. Semantically, a resource accumulates as a trace the
events specified in accessing to the resource: when allocated, a resource res ¢ is associated with the
empty trace; and every time a resource access acc,(res ¢) is performed, the event a is appended to
the trace of the resource res £. We call these event-accumulating traces history traces. For instance,

consider an expression efiler ©f etx = newy,  inacCopen (x);acccrose(x) with the operations
open and read and the temporal specification ;e for files. When it terminates, the history trace
of the allocated resource is open - close. An access acc,(res ) succeeds only when the history
trace extended with an event a is a prefix of some trace in [¥] for the temporal specification ¥ of
the resource res £. The above expression efi1e1 successfully terminates. By contrast, an expression

erile2 def letx = newy, in accopen(x); acCeiose (X); acCread (x) gets stuck because it tries to apply
read after close, but ¥ri1e does not accommodate the trace open - close - read.

Although resource access constructs take and return only resources, commonly used resource
operations may take and return other values (e.g., write and read for files may take and return
strings, respectively). We made this design choice to make our technical development as simple as
possible while still being able to express temporal usage analysis, as in the work of Igarashi and
Kobayashi [22], which only allows resource accesses to return Boolean values nondeterministically.
We believe that it poses no challenge to support resource operations in a “common” form.

A deallocation construct drop(v) discards resources involved in the value v. It is allowed only
when the history traces of the discarded resources conform to the temporal specifications (i.e., only
when the resources have been used-up as described by the specifications). The deallocation is a
common instruction in many resources by assuming that it is performed together with operations
that finalize the resources, such as close for files and free for manually managed heap memory.
The deallocated value v is not restricted to be a resource; it can be an arbitrary value, e.g., a
resource-capturing A-abstraction Ax. accopen(res?).

We can define the notions of free and bound variables and capture-avoiding substitution in a
standard way. Given a value substitution y, which is a finite mapping from variables to values, the
expression y(e) is obtained by applying y to the expression e in a capture-avoiding manner. A value
substitution that only maps a variable x to a value v is expressed by {x + v}. The domain of a
value substitution y is denoted by dom(y), and the concatenation of value substitutions y; and y;
with distinct domains is by y; W y,. We use similar notation for other mappings (such as resource
heaps introduced in Section 2.1.2).

2.1.2  Semantics. We define the operational semantics of A,.s using two relations: pure reduction
relation ~ and evaluation relation ~», which are defined in Figure 3 along with other auxiliary
definitions. Given the event set A, we write A* and A“ for the sets of finite and infinite, respectively,
traces consisting of events in A. We designate finite, infinite, and indefinite (either finite or infinite)
traces by @, 7, and §, respectively. We use the notations € and @ - § for the empty trace and the
concatenation of a finite trace ® with an indefinite trace §, respectively. We also introduce resource
heaps because resources in our language are stateful. A resource heap o is a finite mapping that
associates a resource location ¢ with a history trace @ and a usage specification S, which is the trace
set representing the denotation [¥] of a temporal specification ¥ given when allocating ¢.

“The design decision to return the same resource as the argument stems from our type system with uniqueness typing.
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Traces @ € A* 7€ A § € A® def A*UA® TraceSets S C A®

Resource Heaps o := {# g O -t g ®n}
Value Pattern Matching | [v/P]

vix] € (xovr [10/01 €0 [(vuw)/(PuP)] € [wi/P]w[v/P)]

Pure Reduction Rules

(Ax.e) v ~ {x 1+ v}(e) if0 0 then e; else e, ~ e
(recfx.e)v ~ ({f—recfx. el W{x— v}(e) ifo nthenejelsee; ~ e, (if n # 0)
letP=vine ~ [v/P](e) nén, ~ n ®ny

Discardable Heaps

t_ def
EoSVermsoecoomes

Evaluation Rules ‘ (e1,01) » (e,07) ‘

e~ ¢ (e1,0) ~ (e}, 0')
(e,0) ~» (¢,0) (letP =ejine;0) w (letP =¢finey, o)
[¥] + 0 dom(c’) = loc(v) E' o
(newy, ) ~» (rest,o W {¢ =) €}) (drop(v),c W a’) ~» ((),0)

@-a € pref(S)
(accq(rest),c W {f g @}) ~ (rest,c W {f —¢ @ a})

Fig. 3. Operational Semantics of Ayes.

The pure reduction relation ~ is a binary relation over expressions, defined by pure reduction
rules shown in Figure 3. We assume that a-conversion of binders is performed to avoid name clash.
The rules are almost standard except the one for let-expressions let P = e; in e,, which relies on
a value substitution [v/P] obtained by matching a pattern P with a value v (it is also defined in
Figure 3). We assume that the denotation of an arithmetic operation & is given by &.

The evaluation relation ~» is a binary relation over configurations, which are pairs of an expression
and a resource heap. Formally, the evaluation relation is defined as the smallest relation satisfying
the evaluation rules presented in Figure 3. The first two evaluation rules are self-explanatory,
meaning that an expression that manipulates no resource is evaluated via the pure reduction rule
and that the evaluation of a let-expression let P = e; in e, starts by evaluating the expression e;. A
resource allocation newy, allocates a fresh location ¢ and sets the initial history trace and usage
specification to the empty trace € and the trace set [¥] given by the user-provided specification ¥,
respectively. We require that the trace set [¥] be nonempty as, otherwise, we cannot access nor
deallocate the resource. A resource access acc,(resf) appends the event a to the history trace @ of
the resource res ¢ if the appending result @ - a is a prefix of some trace in the usage specification S of
the resource res ¢. This side condition dynamically ensures that the usage of the resource satisfies
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its safety property. Formally, the set pref (S) of finite prefixes of traces in a trace set S is defined as:

pref(S) € {0]36.0-5 € S}.

A resource deallocation drop(v) discards the resources involved in the argument v. The evaluation
rule for drop(v) identifies such resources by loc(v), splits the resource heap into fragments ¢’ that
only contains resources to be discarded, and o that should be retained. The heap ¢’ is checked
to be discardable by the discardable heap predicate |=" o’, which ensures that each history trace

. . . . . . . def

in ¢’ satisfies the corresponding usage specification. For instance, an expression efi1e3 = let x =
newy, in acCopen (x); acCc1ose (x); drop(x) may discard the allocated resource via drop(x) because
its history trace at the point of drop(x) is open - close, which conforms to ¥f;1e. By contrast, for

. def . .
an expression efjjes = letx = newy  in acCopen(x); drop(x), the deallocation drop(y) should
fail, because the created file resource is still opened at the point, but the usage specification ¥ri1e
requires files to be closed finally.

2.2 Problem Definition

In this section, we formally define the problem of temporal resource usage analysis for full programs.
We assume a program to be an expression that returns some constant, such as the unit value ().

To properly define correctness of temporal resource usage, we first classify resources by their
lifetimes. Every resource res ¢ allocated during a program execution falls into one of three categories,
depending on their duration in the resource heap:

o Finite-Lifetime Resources, which are explicitly deallocated by drop during the execution;

e Infinite-Lifetime Resources, which are never deallocated and remain in the resource
heap forever when the execution diverges; and

e Indefinite-Lifetime Resources, which remain in the resource heap produced by the
terminating execution.

Resources are correctly used if their history traces conform to their temporal specifications.
For a finite-lifetime resource, its correct use is guaranteed if the history trace at the point of the
deallocation is contained in the usage specification—this requirement is actually checked by the
evaluation rule for drop. Therefore, the correct use of finite-lifetime resources are guaranteed by
ensuring that the execution of a program does not get stuck. For an indefinite-lifetime resource,
its correct use is guaranteed if the program execution terminates at a discardable resource heap
because every history trace in such a heap satisfies the corresponding usage specification (see
Figure 3). Therefore, the correct use of indefinite-lifetime resources are guaranteed by ensuring
that the terminating execution of a program produces a discardable resource heap.

The correctness of the usage of infinite-lifetime resources is more subtle. The semantics of Ayes
guarantees that they are safely used at any point (specifically, the evaluation rule for resource
accesses does this check), but it does not guarantee that history traces satisfying their usage
specifications are eventually generated during the divergent execution. For example, consider a
program that alters the example in Figure 1 to invoke the close operation after the recursive call
(it is concretely given in Example 2.5 with slight simplification). The execution of such a program
does not get stuck under the semantics of A,es. Furthermore, when the execution terminates, all the
allocated resources should be discardable. However, the resource usage in the divergent execution
of that program does not satisfy the file specification ¥¢j1. = open-(read | write)*-close because
history traces for allocated file resources evolve to open - read but remain unchanged after that.

To formalize the correct use of infinite-lifetime resources, we introduce the notion of evolution

—
of history traces. Hereinafter, we write X, "N for an infinite sequence X, X1, X, - - - .
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Definition 2.1 (Multi-Step Evaluation). Multi-step evaluation (e, ) ~»* (€', 0’) is the reflexive,
transitive closure of the evaluation relation ~».

Definition 2.2 (Evolution of History Traces). Given a program e, the set Trace(e)™ of triples of the
form (¢, S, @,"Y) is defined as follows:

Trace(e)® & {(£,5,5.%Y) | 3¢, 0" (6,0) ~* (¢,0") A £ & dom(c’) A

Fe" N, TN (¢, 07) > (0,00 W {€ ¢ @p}) A
Vn € N. (en,0,{¢ s @n}) > (en+1, One1 W {£ P @n+1})} -

Let’s see the detail of Definition 2.2. Given a program e, let (¢, S, @,"N) € Trace(e)™. Then,
there exist some ¢’ and ¢’ such that (e,0) ~»* (€,0’) and £ ¢ dom(c’). This indicates that the
configuration (¢’, o”) is reachable from the initial configuration (e, @) and during the execution up
to (€', 0”), no resource is allocated at the location ¢ (or, some resource has been allocated at ¢, but it
has been deallocated already). We are also given some e, and 5,,"" such that

(¢',0") > (e, 00W{l g @}) AVneN. (e, 0, W {l g @n}) w (Ens1,Onr1 Wl g Dni1}) -

Since the location £ is not contained in ¢’, the first conjunct indicates that the expression ¢’ allocates
a new resource at the location ¢, its usage specification is S, and its initial history is @y (hence,
@9 = €). The second conjunct says that the execution starting from (¢’, o”) diverges, it continues to
retain the resource at ¢, and the infinite sequences of the history traces for the resource constructed
during the execution match 5’,,”€N. Thereby, (¢, S, E"EN) € Trace(e)™ indicates how the history
traces of the resource res £ with the usage specification S are evolved.

Now, we formally define the temporal resource usage analysis problem. We write (e, o) ~» if
the execution from the configuration (e, o) diverges. That is,

(.0) »* E TGN T (e,0) = (e0,00) A V1 € N. (en0n) > (€nst, Tar) -

Definition 2.3 (Temporal Resource Usage Analysis). A program e is temporal resource usage correct

if it satisfies the following criteria:

Finite-Lifetime Criterion The execution of the program e terminates or diverges, that is,
either of the following holds: 3 v, a. (e,0) ~* (v, 0); or (e, 0) ™.
Indefinite-Lifetime Criterion If the execution of the program e terminates, the final resource
heap is discardable, that is, Y v, 0. (¢,0) ~* (v,0) = |:"' .
Infinite-Lifetime Criterion For any (¢£,5,@;'°") € Trace(e)*®, either of the following holds:
o The resource res ¢ is never accessed after reaching some desired state, that is, there exist
some n € N and finite trace ® € SsuchthatVm > n. @ = @,,; or
o The resource res ¢ continues to be accessed infinitely and the limit of its history traces
conforms to the usage specification, that is, there exists some infinite trace 7 € S such
thatVeo € pref({n}).In € N.o = o,

The finite- and indefinite-lifetime criterion are formulated as discussed above. In fact, these
criteria are exactly the same as the ones considered in the resource usage analysis problem [22]. For
example, a program only executing the expression eriier in Section 2.1.1 or efjje3 in Section 2.1.2,
which only creates finite- or indefinite-lifetime resources, meets the criteria. In contrast, a program
executing the example efjieq in Section 2.1.2 does not meet the finite-lifetime criterion, and a
program let x = newy  in acCopen(x); () does not meet the indefinite-lifetime criterion.

To illustrate how the infinite-lifetime criterion works, we consider two example programs.
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Example 2.4 (Temporal Resource Usage Correct Example with Infinite-Lifetime Resources). The first
example simplifies the valid program presented in Figure 1, given as follows:

def . . . .
evalid = letf = (recfx.lety = efiteinletx = ek infx)inletx = newy,  infx
where

def .
efile = lety=newy  inaccopen(y);accread(y);accelose(y)
def
€lock = aCCacquire (x)§ € aCcrelease(-’c)
with some unit-returning expression e representing a critical section (which we suppose that meets

the criteria). For each file resource created during the execution of this program, Trace(eya1id)™
tells that its history traces are evolved as

€, open, open - read, open - read - close, open - read - close, open - read- close, ---

Because open - read - close € [¥fi1e], the file resource meets the infinite-lifetime criterion. For
the lock resource created before calling the function f, Trace(eya114)™ tells that its history traces
are evolved as

€, acquire, acquire - release, acquire - release - acquire, (acquire - release)z, cee

Because (acquire-release)® € [¥ri1e] and any finite prefix of (acquire-release)® is contained
in the evolution, the lock resource meets the infinite-lifetime criterion. Furthermore, the program
satisfies the other criteria. Thus, it is temporal resource usage correct.

Example 2.5 (Temporal Resource Usage Incorrect Example with Infinite-Lifetime Resources). The
second example alters the one in Example 2.4 to call close after the recursive call, given as follows:

ety O let f = (rec f x. I'et Y = €open-read inlet x = e1ock in f x;€9,5,) in
let x = new,, infx
lock

where

€open-read = lety= newy, in accopen(y); accread(y)
£
€close = aCCclose(V)? dFOP(y) .

Note that the expression ejock is the same as the one given in Example 2.4. For each file resource
created during the execution of this program, Trace(einva1id)™ tells that its history traces are
evolved as

€, open, open - read, open - read, open-read, ---

since close is applied after the recursive call returns, although it never returns. Because open -
read ¢ [¥ri1e], the program does not meet the infinite-lifetime criterion and is therefore not
temporal resource usage correct.

3 Technical Overview

This section provides an overview of the challenges involved in solving the temporal resource
usage analysis problem—especially, ensuring the infinite-lifetime criterion—using type systems,
along with our solutions. Specifically, we identify three main challenges: (1) resource aliasing, (2)
progressivity guarantee, and (3) termination analysis. In the following subsections, we describe
each challenge and our corresponding solution.
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3.1 Resource Aliasing

Aliasing is a classic yet central issue in the verification of stateful programs [10, 49]. Since the
resources in our language are stateful, we must address the problem of resource aliasing. For example,

consider a function v % Ax. Ay. accelose (x); drop(x); acceiose (y); drop(y). If the same file resource
is passed to both x and y, the resource is accessed (at accciose () after deallocated (at drop(x)). In
contrast, when distinct file resources are passed, and they are both ready to be closed, the call to
v safely terminates. Therefore, to effectively reason about programs with stateful resources, it is
crucial to track the aliasing of resources.

The aliasing problem has been extensively studied in the literature [10, 25, 32, 34, 37, 49, 54].
Among various established approaches, we adopt uniqueness typing [6, 16, 48] due to its simplicity
and generality. Uniqueness typing is a variant of linear typing that guarantees each resource has a
unique reference, thus forbidding the aliasing of resources. We discuss how we can support aliasing
of resources in Section 6.1.

3.2 Progressivity Guarantee

Progressivity guarantee is the critical problem arising in ensuring the infinite-lifetime criterion. To
see why it is necessary, consider the following program:

£ . .
e dd let f = (rec f x. acCread(x); f x) inlet x = newy, inaccopen (x);fx.

This program first creates and opens a file resource and then passes it to the recursive function
f, which continues to access the resource via read infinitely. It does not satisfy the temporal
specification Wri1e because the created file resource will be never closed.

The crux of the problem is that the resource’s
state does not progress even though the infinite
execution of the program does. To see it in more
detail, consider the finite automaton presented

on the right, which represents the file specifi- open close @

read,write

cation Pri1e. With this automaton-based view, Start

in the program ey, the state of the created file

resource at the point immediately before the

recursive call is s71!¢, and it is then stuck in this non-accepting state: although the execution does
not stuck and progresses infinitely by repeatedly calling accreaq(x), the resource state enters sz‘c ile
again and again with a self-loop.

Our rationale for identifying this issue as problematic is that the absence of progressivity
guarantees on resources hinders ensuring that the resources reach certain desired states—namely,
the accepting states in the automaton representations of their specifications. At its core, the infinite-
lifetime criterion requires that a resource eventually reach a desired state: either the resource should
be left unaccessed forever in a desired state, or, over the course of the execution, it should visit the
desired states infinitely such that the limit of the history traces at these states matches some trace
in the usage specification. Thus, the lack of the progressivity guarantee makes it difficult to ensure
the infinite-lifetime criterion.

Conversely, by ensuring that the states of resources progress along with the execution, we can
guarantee that they reach the desired states. For example, consider the following program:

def let f = (rec f (x, ¥). acCopen(x); accciose (y);let z = newy inf (zx))in

€2 . .
letz; = newy  in letz, = newy  in aCCopen(22); f (71, 22)
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where we use the notation rec f (x, y). e to denote rec f z. let (x, y) = zin e for some fresh z. This
program first creates two file resources z; and z; and then calls the recursive function f with them.
The states of the resources passed to f progress along with the execution—specifically, every time
the function f is recursively called. For the first argument resource x, its state at the time of the
call is supposed to be slﬁle. Since it is accessed via open, its state is changed to szﬁle. Finally, it is
passed to the recursive call as the second argument. For the second argument y, its state at the
time of the call is supposed to be sf'1¢. Since it is accessed via close, its state is changed to sgﬂe.
Then it is left unaccessed forever in the desired state sg ile

Based on this observation, we introduce the notion of timers to the type representation of
resources as a technical device to guarantee the progressivity of resource states towards the desired
states. Specifically, in our type system, the types of resources take the form Resy accompanied by
a timer m, which is a natural number actually, and a temporal specification ¥; we call such a type a
temporal resource type. Because, as seen above, recursive functions are the source of obfuscating the
progressivity guarantee, timers cooperate with recursive function calls. Once a resource of a type
Res{ is passed to a recursive function, the value of the timer m is decreased—namely, the timer
represents the “potential” of how many times the resource can be passed to recursive functions.
The timer is a natural number, so it must be nonnegative. Therefore, it disallows the resource
to be passed to recursive functions infinitely many times. This mechanism enables rejecting the
problematic example e; as it passes the resource x to the recursive function infinitely. In contrast,
in the example e,, each created resource is passed to the recursive function only twice. Therefore,
we can assign a inital timer of 2 to these resources, to show they reach the desired state eventually.

However, only allowing timers to be decreased is not very useful. For example, consider the
following program with lock resources:

e def let f = (rec f x. acCacquire (X); € aCCrelease (X); f x) inlet x = new\’l,"lock infx

where we assume that the expression e is terminating and does not reference the lock resource
x. Since the temporal specification ¥ock for lock resources accepts the infinite usage (acquire -
release)®, this program should be accepted, although the same resource x is passed to the recursive
function infinitely many times.

Our idea to address this issue is that, since we intro-
duce timers to ensure that resources reach certain desired
states, we can allow resetting the timer of a resource when
it is in a desired state. For instance, the automaton for start —s
lock resources is given on the right.’ It illustrates that
the timer of a lock resource can be reset if it has not been release
accessed yet or the last operation applied to it is release.
For a resource v in a desired state,” we allow applying a
reset construct reset™(v), which resets the timer of the resource v to a new timer m. Using this
mechanism, we can rewrite the example e; to the following one, which our type system accepts:

acquire

let f = (rec f x. acCacquire (X); € aCCrelease (¥); reset! (x); f x) inlet x = newlll,10ck infx.

The initial and reset timer is 1, which indicates that the lock resource reaches the desired state sll"Ck

for each recursive call.

5This is an extended Biichi automaton (defined in Hofmann and Chen [21]) to allow both finite, e.g., (acquire - release)®,
and infinite, e.g., (acquire - release)®, traces to be accepted by the same automaton.
®Qur type system tracks the current state of a resource by reusing the temporal specification ¥ in its type.
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Timers mn € N Termination Annotations { =4 | ?

Patterns P = x| ()| (P,P)|'P|TP

Values v ou= x|clrest | (vov) [ 'v]Tv|next(v)| A x.e | rect fx.e
Expressions e == v|v @, |letP=eine |if0vthene elsee, | v v |

newy | acc,(v) | drop(v) |dup(v) |

reset™(v) | later(e) | vi® v, | prev(v) | e = {

Fig. 4. Syntax of A2, (Extends Figure 2).

TeS

3.3 Termination Analysis

To see the importance of termination analysis, let us revisit the program example ejnya1iq given in
Example 2.5. Recall its definition:

let f = (rec f x.let y = egpen-read inlet x = e1ock in f x5 €.75,) IN
letx = newy,  infx
def .
€open-read = lety= newy  in aCCopen(¥); acCread(y)
def
€close = aCCclose()’); dFOP(y) .

de
€invalid =

If we assume that the recursive call f x diverges, we can conclude that this program should not be
temporal resource usage correct because the resource x would not be in the desired state at that
point. Although assuming that recursive function calls always diverge enables sound reasoning, it
is often too conservative. For example, consider the following recursive function:

rec f n.if0 n < 0then () elselet y = egpen-read inf (11— 1); €050 -

This function terminates for any integer n, so each created file resource reaches the desired state and
may therefore be discarded by drop. This example indicates that precise reasoning about temporal
resource usage correctness often relies on precise termination analysis.

Termination analysis is a fundamental problem in computer science and has been extensively
and still actively studied for decades, ranging from first-order programs [15, 30] to higher-order
ones [20, 29, 46].

Rather than incorporating some specific termination analysis method to the type system, we
assume that programs are annotated to indicate whether expressions terminate. Given a program
equipped with such termination annotations and well-typed in our type system, we prove that the
program is temporal resource usage correct, provided that the termination annotations are correct.

4 Temporal Resource Type System

Based on the ideas described in Section 3, we formally define our temporal resource type system in
this section. Because our type system requires new constructs that work as type annotations, we

first introduce an extension A3 of the language Aes given in Section 2.1, and then present our type
system for A

res*®

€]
res

4.1 Extended Language A

This section defines the syntax and semantics of the extended language A5 for temporal resource

usage analysis.”

"The ® symbol in the name of AQ, hints the addition of timers to the language.

Tes
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4.1.1 Syntax. The syntax of 12, is presented in Figure 4. Throughout the paper, constructs or rules

unchanged from A,s are shaded (or omitted); those extended with annotations are grayboxed ;
and newly introduced ones are shown with no special styling. In the remainder of this section, we
explain how the extensions and modifications address each of the solutions described in Section 3.

Uniqueness Typing. Uniqueness typing is a type-based methodology to enforce that there are
only unique references to mutable values [6, 16, 32, 48]. We introduce uniqueness in the style of
the language L3 [34]. Our extended language A2 is built atop uniqueness typing in that every
unannotated value is enforced to be only referenced in a unique way. For a value v that retains
no resource, we allow multiple references by annotating it with the !-constructor ! v; we call such
a value v unrestricted. Such an annotated value can be duplicated manually using duplication
constructs dup. We also introduce another kind of annotation constructs f v, which state that the
value v is discardable. Naturally, we require all the resources involved in a discardable value v to
be discardable, i.e., already used-up. By allowing deallocation (through drop) only for discardable
values, our type system ensures the finite-lifetime criterion for well-typed programs. Note that,
whereas unrestricted values are discardable, the converse does not hold. For example, while released
lock resources are discardable, the references to them have to be unique as they may be acquired
again. Patterns are also extended with ! P and { P to extract unrestricted and discardable values
from these constructs, respectively.

Temporal Resource Types with Timers. To implement temporal resource types with timers, we
introduce a new construct reset™(v), which allows resetting timers, and equip resource allocations
with initial timers newy.

We also have to track when resources are passed to recursive functions because their timers
should be decreased then. One simple approach is doing it pure syntactically—namely, having the
reduction of an application (rec f x. ) res £ decrease the timer of the resource res £. However, this
approach is not very flexible. For instance, consider an application (rec f x. 1y. e) () res £, where,
semantically, the resource res ¢ is passed to the recursive function, while, literally, it is passed to the
A-abstraction Ay. e. Thus, if we adopted this purely syntactic approach, we would need to impose
heavy or unnatural constraints on recursive functions (e.g., disallowing recursive functions that
returns A-abstractions taking resources).

Instead of such a syntactic approach, we employ a type-based mechanism, inspired by later
modalities [35]. Specifically, we introduce a later type » T, which is assigned to computations
caused by recursive functions (T is a type representing the resulting value of the computation).
This invariant is enforced by the following two typing disciplines: first, in typechecking a recursive
function rec f x. e, our type system assigns a function type »(T; — T3) to the self-referential
variable f;® second, a function of a type »(T; — T;) can be applied to a value of the type » T; and
the application has the type » T,. As can be seen from the second discipline, for passing a value to
a computation of a later type, our type system requires converting the type T of a value to the later
type » T. Intuitively, this conversion determines the point when the value is passed to a recursive
function. Based on this observation, we introduce constructs later(e) and next(v), which make
expressions and values, respectively, of later types. The semantics of A3 ensures that resources
passed to e or v are used after their timers are decreased. We also introduce later applications in the
form v; ® vy, which applies the “later” function v; to the “later” value v,. Furthermore, as the prior
work on later types [4, 13, 45], we allow converting a type » T of a later value to the underlying type
T through a construct prev, provided that the later value is not (nor does not capture) a recursive

8Function types in our type system take a different form to support additional typing information, as shown shortly.
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function; we check the side condition on the type T. Note that this type-based approach imposes
no syntactic restriction on recursive functions, unlike the aforementioned syntactic approach.

Termination Annotations. As described in Section 3.3, to annotate whether expressions terminate,
AS supports constructs with termination annotations. A termination annotation { is either the
terminating annotation 4, which indicates that expressions terminate, or unknown annotation ?,
which indicates that expressions may not terminate. These annotations are attached to expressions
by ascription e :: {, A-abstractions (A¢ x. e), or recursive functions (rec® f x. e). The annotations in
the last two constructs are of the function bodies.

Heaps o := {f H;'il @1, - sty Hg::’ @n}
Value Pattern Matching | [v/P]
def def
[tv/!P] = [v/P] [¥v/1P] = [v/P]
Heap Timer Count-Down Heap Timer Count-Up
om g B " a|t- o € o} o €y BT alte® o € o}

Pure Reductions Rules
(A x.e)v ~ {xrvi(e)={
(rect fx.e) v ~ ({f = next(!rect fx.e)} W {x = v})(e) =: {
vil~wv dup(v) ~ (v, v)

next(v;) ® next(vy) ~ later(v; v) prev(next(v)) ~ v

Evaluation Rules ‘ (e1,01) » (e,02) ‘

[¥] # 0 (e,oWar™) w (e, 0Way) dom(ay) = loc(e)

(new!l, o) ~ (rest, oW {f '—’ﬁ'fy]] €}) (later(e),c W 1) ~> (later(ey), o W oy%1)

(e,0) ~ (€,0)

(e::d,0) ~ (¢ :0,0")

(reset™(rest),oc W {¢ r—>§”, @}) ~ (rest,c ¥ { =g o})

€]
Tes

Fig. 5. Operational Semantics of A, (Excerpt).

4.1.2  Semantics. We present (an excerpt of) the operational semantics of A3 in Figure 5. Resource
heaps associate resource locations with their timers in addition to usage specifications and history
traces. The pattern matching allows extracting values from new constructs. Note that we cannot
freely extract the argument value v from a value construct next(v) of a later type.

The pure reduction rules given in Figure 5 address the altered or newly added expression
constructs that behave independently of resource heaps. Function applications are altered to
annotate the application results with the termination annotations attached to the functions in
order to indicate that the annotations are given by the user. Furthermore, after the reduction,
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recursive functions are wrapped by the next and !-constructs. This is because recursive functions
are of a later type, as discussed above, and may be called multiple times via recursive calls. For an
termination ascription e :: {, once the expression evaluates to a value v, the termination annotation
{ is taken away because the termination of e has been ensured. An expression later(v) of a later
type reduces to the value next(v) of the later type. The reductions for duplication, later applications,
and applications of prev are self-explanatory and follow the prior work [13, 34, 45].

The evaluation rules address the constructs whose behavior depends on resource heaps. The
evaluation rule for resource allocations is modified to initialize the timer of the allocated resource
with a given one. Reset constructs allow resetting the timer of a given resource. The evaluation of
other resource operations (acc, drop) leaves the timers untouched (see the supplementary material
for the formal rules). The evaluation of a later expression later(e) under a resource heap oy proceeds
by evaluating the expression e. Because the expression e performs the computation caused by a
recursive function call, the timers of the resources referenced by e has to be decreased in evaluating
e. In contrast, when the scope of later escapes, the remaining values of the timers are increased.
We call these decreasing and increasing of the timer values count-down and count-up, respectively.
Count-down and count-up on timers in resource heaps are defined in Figure 5. Note that, since
timers are natural numbers, 0~ is undefined if the timer of some resource in the heap o is less
than m.

Example 4.1 (Example Evaluation: Run Out of Timers). This example illustrates how timers count-
down when the recursive calls happen. For brevity, we ignore termination annotations installed
during evaluation. Consider the following program epain:

def . 1.
enain = letf =vrinletx = newy inf x
vr def rec’ f x. let y = apnext f in y next(x)

where

unwrap o next(A? f.let | f = finf)
apnext ef )¢ f.Af x.lety = unwrap® finy® x .

Intuitively, the functionality of unwrap is to unwrap a !-value into a normal value under a next-
constructor. And apnext is used in the body of a recursive function to apply a recursive occurrence
to a next-value.

The evaluation of ep,in proceeds as follows (the choice of the resource location is arbitrary):

(€main, 0)

~w* (vr (rest), {€ '_)E[‘P]] €}

~w*  (let y = apnext (next(! vr)) in y next(res ), {£ '_)E[\If]] €})
~>* (next(vr) ® next(res?), {¢ Hﬁ\yﬂ €})

~*  (later(vr (res?)), {¢ H[l[w]] e})

~*  (later(later(vs (res?))), {¢ '_)E[‘P]] €}) P .

It might seem that the evaluation of enin diverges, but it is actually stuck at this point. Although
timers are not counted down by looking at the resource heap in the main evaluation, it is counted
down during evaluation of the sub-program inside later-constructors. Our timer assignment of
1 allows the resource to occur only inside a single later-constructor; when more are introduced,
evaluation gets stuck.
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Basic Types B == Unit]Int]...

First-Order Types t == B|Resg|!i|Te|wi]i®1

Value Types T = B|Res|!T|T|»T|T®T|T -"C
Computation Types C == T&¢

Typing Contexts I o= {x:T,...,x: Ty}

Store Typing Contexts X == {f :Resy, ... 0 :Resy"}

Finite-Trace Sets s < A

Finite Specifications ¢ u= s

Infinite Specifications ¢ == {p1, ..., pn}

Lassos P == {Sinit Srep)

Temporal Specifications / Usage Prophecies

¥ ou= (49

Fig. 6. Syntax of Types.

4.2 Types

The syntax of types, given in Figure 6, consists of value types T and computation types C, which are
used to type values and expressions, respectively. A value type is: a basic type B for constants; a
temporal resource type Resy for resources; an of-course type ! T, which is assigned to unrestricted
values of the type T; a discardable type T T, which is assigned to discardable values of the type T; a
product type T ® T; or a function type T —™ C, where m is no greater than the minimum timer
among those of resources captured by functions of this type.” A computation type is composed of a
value type T and a termination effect ¢, which describes the values produced by the expressions of
the computation type (if any) and their termination behavior, respectively. Typing contexts I' and
store typing contexts ¥ associate variables and resource locations, respectively, with their types.

Now, we also formally define temporal specifications, as in Figure 6, to exploit them in our type
system. Here, a temporal specification ¥ is a pair of a finite specification ¢ and an infinite specification
¥, which specify traces on resources generated during their lifetimes. We project ¥ to ¢ and ¢ by
¥fin and Wi, respectively. A finite specification ¢ is a set s of finite traces, determining the finite
usage of a resource: when the resource is explicitly discarded by drop or implicitly discarded, its
history trace should be in the set s. In contrast, an infinite specification ¢/ determines the infinite
usage of a resource: if a resource remains accessible forever in an infinite execution, the limit
of its history traces should be in the interpretation of ¢. In general, ¥ is a finite set of the form
{{s11,512), - =+ » (Sn1, Sn2) }, Where each pair (s1, s;2) is called a lasso. The interpretation /] of such
¥ is formulated as below.

Definition 4.2 (Interpretations of Temporal Specifications). The interpretation [¥] of a temporal
specification ¥, along with that of its infinite specification ¥, is defined as follows:

[KSinit, 3rep>ﬂ o Sinit ngp [[Ebﬂ o U [[pﬂ [[‘P]] def pfiin y [[‘I"inf]]
pPEY

wheres”dgf{coo~@1‘...|\¥i € N.o; € s}gAmands-Sdéf{a)-5|(D €s NS €S

Instead of attaching a timer m, we can possibly apply alternative techniques to enrich function types with explicit
information about captured contexts, as in, e.g., capturing types [8].
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Discardable Types
e € ¢fin T S PR
+" B T Resy FrT T e T HT T

Unrestricted Types

T T, HT
1 2
H'B T o T HTL®T
Type Timer Count-Down Type Timer Count-Up
B-m def B Btm def B
_ def _ +m  def my+m
(Resp®)™™ = Resp° ™ (Resy? = Resy’
'\I’ -m def i ,W +m  def | !
('T) = T ('T) = IT
m def _ def
SR ORI () (FT™ = T
T e(rm) >-T)tm e (Tmy
(o)™ « LT"enL™" (LT « LML
(T —m )™ & 7 _ome-mc (T —m cytm 7 _gmerm ¢

Fig. 7. Predicates and Operations on Value Types.

Namely, a trace in [[{/] is a finite trace in s; followed by infinite loops of traces in s;. We adopt
this form of infinite specifications because it is both convenient and expressive. For convenience,
it enables us to easily identify “desired” states of the resource—i.e., the states that the resource
should reach infinitely many times during their infinite usage. We can consider that a resource

reaches a desired state if its history traceis @ - @; - - - - - ®, where ® € sjjand @, -+ ,©m € So;
for some lasso (sj1, si2) (m > 0). By ensuring that the history trace of the resource is evolved to @,
@@, 0 @ @, (again, ® € sj;, and @1, @z, - - € $y;) over the course of the execution, we

can guarantee that the trace limit is in the interpretation [/]. For expressivity, this form of infinite
specifications can express arbitrary w-regular expressions [40] and w-context-free-grammars [14].
Although infinite specifications could be represented in a bit more abstract form [45], we think
that the current form is more tractable and sufficiently expressive.

Temporal specifications are used not only to specify traces over the entire lifetimes of resources,
but also to prescribe valid traces for their remaining lifetimes at each program point. While the
former usage appears in temporal specifications associated with resource allocations, the latter
arises in those associated with temporal resource types. However, the set of valid traces may change
over the course of execution. For example, the file specification ¥f;1e allows traces beginning with
open, but once open is applied, it may not be applied again. Therefore, for precise reasoning, it is
necessary to track the valid traces of current resources for each program point. In fact, temporal
specifications involved in temporal resource types describe valid traces for the future usage of
resources—rather than the traces over their entire lifetimes. To reflect this nature, we refer to
temporal specifications associated with temporal resource types as usage prophecies. In Section 4.3,
we show how the type system updates usage prophecies as resources are accessed.

4.3 Type System

In this section, we define our temporal resource type system for the language A%
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Typing for Values |X|T'rwv:T

I-WFT TV, T C FWF Res\’P” TR
- AR ONST ES
O x:Tyrx:T ~ 0|0+ c: typeof(c) ~ {f:Resy} |0 Frest:Resy
O|ITFv:T T TIT+v:T 2 T
T BaANG T Dis
O|ITH!v:IT SITrHFfv:FT
2_1|r_1|-VZT 21|F1|—v1:T1 22|F2|-V21T2
T NExT T PaIr
ZlFFnext(v):»T 21®22|r1®r2|-(\/1,\/2)ZT1®T2
Tr =T =", &{ +T
2_m|r_mLﬂ{x:Tl}l—e:Tz&§ @lr@{fﬁP!Tf}Lﬂ{XZTl}l-EZTz&g
T Lam T REc
SITFA x.e: Ty 0" T, & O|T Frect fx.e: Ty
2|r|—VZT1 FT < T, Fwr T2
T_Sus
erl—v:Tg

Fig. 8. Typing Rules for Values.

We first define certain predicates and operations on value types in Figure 7. The discardable type
predicate ' T and unrestricted type predicate +' T are used to check if the values of type T can be
duplicated and discarded, respectively. Especially, a temporal resource type can be discarded if its
current finite usage prophecy accommodates the empty trace, which means that the resources are
used-up correctly. The count-down operation T~™ (which is partial) and the count-step operation
T*™ on value types are used to reflect the changes on timers in the semantics to the type system. Note
that (! T)*™ = ! T because the values of the type ! T retain no resource. We use the convention that
predicates and operations on value types are applied to typing contexts and store typing contexts
point-wise, thereby obtaining predicates +' T', ' T, and +' 3.

We also define type well-formedness, written Fwr T and Fwr C, which ensure that all the resource
types involved in the type T and C have well-formed usage prophecies. A usage prophecy V¥ is
well-formed if (1) for any lasso p in ¥, [p] is nonempty (note that ¥"f can be empty), and (2)
[¥] is nonempty. To save space, the full definition of type well-formedness is omitted in the paper
and can be found in the supplementary material.

Now, we give define the type system, which consists of typing judgments 3 |T + v : T for values
and 2| T + e : C for expressions, as well as subtyping judgments + T; <: T, and + C; <: Cp. We
first explain the typing rules for values and expressions, and then the subtyping rules.

Value Typing. The typing rules for values are presented in Figure 8. The rules for variables,
constants, resources, applications of arithmetic operations, and pairs are standard. We assume
the metafunction typeof, which returns the basic type of a given constant. For unrestricted and
discardable values, the corresponding typing rules (T_BanG) and (T_D1s) require the captured
contexts to be unrestricted and discardable, respectively. Note that any resource is not unrestricted.
For a “later” value next(v), the argument v is typechecked under the contexts where all the timers
are counted down (T_NEXT) because the timers involved in v are counted down during evaluation
inside a later-computation. In the typing of a A-abstraction (T_Lam), all the captured resources
delegate m counts in their timers to the function type T —™ C. Our type system ensures that the
A-abstraction is applied before the delegated counts run out. For example, consider a A-abstraction
that captures a resource with timer 1. For such a A-abstraction, our type system may give, say, a



Type-Based Temporal Resource Usage Analysis 19

Pattern Matching on Value Types | [T/P]

[T/x] € {x: T} [unit/()] < 0 [r/1p] € [T/P]
[

[1T/1P] € [T/P] [Ty ® L/(Py,Py)] < [Ti/P] W [Ty/P]

Typing for Expressions |X|T+e:C

Fwr C2
SITrv:T SITre:T&L YITre:C; +Cp <: Gy
—— C VaL C_ANNOT C _SuB
YITHV:T&Y SITrexl:T&C YITrke:Cy

21|F1|-€12T1&§1
2 LW[N/Plre T &

=?=+ 3 A+ T if ¢ = ds, =
& 2. 2 Cler &»i def S ¥4 .é and ¢, 4
1w TTwhFletP=eine: L, &> ?  otherwise
21|T1|—vlzlnt 21|T1l—v:|nt
2o | F vy i Int Sollbkbe:C 2 ke C
2 [Tk v h C op 2 ke ' 2ok e C IrZero
21622|rlwr2FV1@V2:|nt&é 21L‘de|l"1L’dl"gl—lfOV’[henelelseez:C
lefll—vlzT—omC leI‘lFVIIP(Tl—OmTz&g)
Yol kv T Yol kv i T
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21622IF1L*5F2|-V1V21C 21622|F1@F2FV1®V22>T2&§
ST ke T&C SITrv:»
C_LATER C_PRrev
S|T + later(e) : » T & S|T + prev(v) : i1 & 4
SITrv:T T SITrv:T T
C Dupr - C_Dror
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Fig. 9. Typing Rules for Expressions.

type T —o! C. A function of this type can be referenced by the value v of a later value next(v) (if
the reference is not under next). However, the value v of a nested later value next(next(v)) cannot
refer to the function because (T —o! C)_2 is undefined. In this way, when a A-abstraction of a type
T —™ C is applied, it is ensured that the timers of the resources captured by the A-abstraction have
been decreased by at most m counts. For typing a recursive function rec f x. e (T_REc), we disallow
capture of resources in the contexts. Furthermore, when resources are passed to the recursive
function, their times are decremented. Therefore, given a function type Ty of the recursive function,
the type » ! Ty is assigned to the self-referential variable f in type checking the body e. Our type
system supports subtyping (T_SuB); we defer its presentation to the end of this section.
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Expression Typing. The typing rules for expressions are shown in Figure 9. For ascription ex-
pressions, we only trust the given annotations (C_ANNOT). The rule (C_LET) typechecks a let
expression let P = e; in e; by splitting given contexts for typing the subexpressions e; and e;, as
usual in uniqueness typing [32, 34]; the other typing rules for compound expressions, like (T_Arp),
follow this convention. Because the value of the expression e, is deconstructed according to the
pattern P, (C_LET) matches P with the type T of the value to make a typing context [T/P] that binds
the variables involved in P. Furthermore, the rule also considers the possibility that the expression
e; diverges; in that case, the resources captured by the expression e; would be implicitly discarded.
Thus, if the expression e; is not trusted to terminate, (C_LET) ensures that the resources captured
by e, are discardable. The termination effect of the let expression is derived from those of the
subexpressions: the let expression is guaranteed to terminate if so are the subexpressions; otherwise,
it may diverge. The rule (C_NEXTAPP) is standard for later function applications [4, 13, 33, 35]. The
rule (C_LATER) decreases the timers of captured resources for the same reason as (T_NExT). The
rule (C_PrEv) allows removing the outermost later type constructor » from first-order values. The
timers of the resources involved in the values are counted up because they escape the scope of
next (see the reduction rule for prev in Figure 5). Duplication and deallocation are only allowed for
unrestricted and discardable values ((C_Dup) and (C_Drov)). The rule (C_Acc) means that, given a
resource access accq(v), the event a is filtered out from the set of the valid traces for the remaining
lifetime of the resource v. This nature is expressed via the filter-out operation ¥~?, which is defined
as follows:!°

Definition 4.3 (Filter-Out Operation). The filter-out operation for lassos, infinite specifications,
and usage prophecies is defined as follows:
def o def

sT? = {‘D’ | @ o € S} <sinit, srep>7 = <5init_w, 5rep>
def @ def

y = {p?lpey nlp®] #0} (. 9)™7 = (72977 .

The rule (C_RESET) ensures that the timer of a resource is reset only when it is in some desired
state. Recall that, given a resource with a temporal specification ¥ at allocation, it reaches desired
states when its history trace is one of @, @ - @1, @ - @1 - @3, - - - for some lasso (Sinit, Srep) € yinf
and finite traces @ € sipjt and @1, @y, -+ € Syep. Because events that have been emitted are removed
from the usage prophecy of the resource, the lasso in the usage prophecy at the point when the
history trace is @ takes the form (sinit, Srep), Where sjpiy must include the empty trace. Furthermore,
by replacing the 1asso (Sinit, Srep) With (srep, Srep), We can ensure that the lasso becomes (srep, Srep)
again when the history trace becomes @ - @;—i.e., the resource reaches a desired state. Therefore, in
general, we allow resetting the timer of a resource if its usage prophecy involves a lasso of the form
(Sinit» Srep) (Where siyi must include the empty trace), and after the reset, we replace the lasso by
(Sreps Srep)- This makes sure that the timer is reset only when the resource reaches a desired state.

Subtyping. We define subtyping for computation types, value types, usage prophecies, and lassos,
as in Figure 10. For computation types, the supertype can involve the terminating effect only
if the subtype also does. In the value subtyping, timers can be underapproximated because the
underapproximation only allows values involving resources to be passed to recursive functions less
times. The other type constructors are covariant in terms of subtyping, omitted in the paper. The
basic idea of subtyping for usage prophecies is that - ¥; <: ¥, holds if [¥;] € [¥1]. However,
it requires two more things: if a resource reaches a desired state under the super-prophecy ¥, it
should also reach a desired state under the super-prophecy ¥;; and if the resource reaches the

10Tn the supplementary material, the definition is slightly generalized to prove the value inversion lemma in a nice form.
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SubtypingRules |+ Ci <: G| |[F T <: | [r ¥ <t W |[Fpr <t p2
FT < T, é’z:ézgl:é
FT]&gl <: Tz&gz

my < my F‘I”l <: lIlz FTZ <: T1 my < my |-C1 <: C2

F Resfl'fl1 <: Resf;; FTh —o™ Cp <2 T ™ Gy

\Ijzﬁn c qjlfin sz € lﬁz- 3,01 € ¢1- Fp1 <: p2 Sinitz c Sinitl . Srepl* SrepZ < Srepl+
FY < ¥ F <Sinit17 Srep1> <: <Sinit2> Srep2>

Fig. 10. Subtyping Rules (Excerpt).

“next” desired state under ¥y, it should also reach the “next” desired state under ¥;. The subtyping
rules for usage prophecies and lassos ensure these (informal) requirements.

4.4 Typing Examples

In this section, we demonstrate how our type system accepts temporal resource usage correct
programs and rejects incorrect ones through some typing examples. More examples are given in
the supplementary material.

In the examples presented in the paper, we use the following functions:

unwrap : »(!T = T& %) def next(A? f.let ! f = finf)

ap : P (T o™ 1&) — (b T —-™ 1M &) &4

«f f.- A% x.lety = unwrap® finlet z = y® xin prev(z) .

where the entities T, C, 1, {, and m can be arbitrary, and the timer 0 assigned to function types is
omitted for simplicity.

Example 4.4 (Well-Typed Temporal Resource Usage Correct Example). This well-typed example is
a variant of the program given in Example 2.4.

def . .
ealia = letf = (rec’ fx. €hody) N let x = new?l,lock inf x

where
def .
hody = efile; letx = elock inap f next(x)
def .
erile = lety=newy inaccopen(y);accread(y);accciose(y);drop(y)
def 1
€lock = accacquire(x)§ aCCrelease(X); reset’ (x)
def .
Yei1e = ({open}-{read,write}" - {close},0)
def . . .
Yok = {({acquire-release}*, {({acquire - release}, {acquire - release})}).

It is different from the program in Example 2.4 in that: (1) the file resource is explicitly dropped
because of our strict typing rules; (2) it requires a reset operation to reset the timer and check for
progressivity for the lock resource, because it continues to be passed to the recursive function within
its body; (3) the recursive call is implemented by the ap combinator because the self-referential
variable f is guarded by »; and (4) (correct) termination annotation is given to the function.
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. . . f .
We can type check the function rec’ f x. €oqy With the function type Ty = Res?l,lcck —o Unit&?:

O{f:»!Tr}®{x:Resy }F eoq : Unit&?

> T_Rec
010 F rec’ fx. eyoqy ¢ Iy .
The crucial point in type checking epody is at reset! (x) in ejock. There, we have the typing context:
T {f > 1T} {x: Res) )}
where ¥)ck1 def ({acquire - release}”, {({€}, {acquire - release})}). The type of x matches
the premises of (C_REesET)—especially, the prefix part of the (only) lasso in ¥i4ck1 contains the
empty trace €, which means that a correct finite usage segment is produced: this is because the
finite event segment of acquire - release has been produced in this iteration. The return type
for reset! (x) is then Res}l,lock, with the prefix part regenerated using the repeating part of the lasso.
Another crucial point is when next(x) is type checked: before this point the type assigned to x
in the context is Res\lf,lock (because reset!(x) has been called). Thus, next(x) can be typechecked
through (C_NExT), and its type is » Res?l,lock, where the timer is decremented because x under next
may be (and is) accessed by the computation caused by the recursive call. As a result, the type of
next(x) matches the argument type of the function returned by ap f. The remaining type checking
is straightforward, and we conclude that the program is well-typed.

Example 4.5 (Il-Typed Temporal Resource Usage Incorrect Example). This ill-typed example is a
variant of the program given in Example 2.5. We make similar changes as in Example 4.4.

def ? . .
einvalid = letf = (rec’ fx. ebody) inletx = new?[,10Ck infx
where

def . .

eody = lety = egpen.readinlet x = ejock inap f next(x); eciose
def 0 .

€open-read = let y= new‘l’fne n aCCopen()’)Q accread(Y)
def
€close = accclose()’); drOP(Y) .

The expression ejock and the specifications W)oc and Pri1, are the same as those in Example 4.4.
This function body will not type check. The issue is in type checking the sequential com-

position of ap f next(x); ec10se- Remember that this is syntactic sugar for letz = ap finlet () =

znext(x) in ec10se for some fresh variable z. At this point, we have the following instance of (C_LET):

0 | L zneXt(x) T &gl 0 | ry F eclose : T2 &§z §1 =7 :}I—T 1—‘y
O[Ty, Wk let () = znext(x) in ecrose : T2 & 1> {2

C_LET

where
def .
Ty, dzf {x: Res}ylock} w{z:» Res?l,lock —o Unit & ?}
1€l . 0
L = {y: Res\l,opened}

£ .
Yopened = ({read,write}* - {close},0) .
It is easy to see that { = ? since the function z has the return computation type Unit & ?. This
requires us to check the premise +' T}, i.e., R Res?l‘opened' However, this requirement does not hold:

‘Popenedﬁ” = {read,write}” - {close} does not contain the empty trace ¢, that is, the resource is
not used-up yet. Therefore, the program is ill-typed. This example illustrates we correctly detect
the violation of the infinite-lifetime criterion due to implicit discarding.

Note that, if the termination annotation given to the recursive function were 4, the type system
would accept the program. This reliance on termination annotations allow effective reasoning
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about programs where terminating computations involve recursive functions, such as the correct
program presented in Section 3.3, which is similar to ejnya1ig but the recursive function terminates
and hence the file resource will be closed eventually. The soundness of our type system, shown in
Section 5, rests on the correctness of the given termination annotations.

5 Soundness

In this section, we establish the soundness of our type system. We prove that any well-typed
program correctly uses resources according to the criteria defined in Section 2.2. We present three
main theorems, one for each category of resource lifetimes: finite, indefinite, and infinite.

The soundness for finite-lifetime and indefinite-lifetime resources almost directly follows from
syntactic type safety, since our semantics does the checking for us.

THEOREM 5.1 (SOUNDNESS: FINITE-LIFETIME RESOURCES). For any well-typed program e such that
0|0+ e: B&, the finite-lifetime criterion given in Section 2.2 is satisfied, i.e.,

JAv,0. (e,0) »* (v,0) or (e, 0) = .

Proor SKETCH. By the standard progress and preservation lemmas for our type system, which
together establish ordinary syntactic type safety [55]. O

THEOREM 5.2 (SOUNDNESS: INDEFINITE-LIFETIME RESOURCES). For any well-typed program e such
that 0|0 + e: B&, the indefinite-lifetime criterion given in Section 2.2 is satisfied, i.e.,

Vv,0.(6,0) w* (v,0) = [ 0.

Proor SKeTcH. The indefinite-lifetime criterion requires the resource heap to be discardable
upon termination. By the preservation lemma, a terminating execution results in a well-typed
configuration X + (v, 0) : B& { for some store typing ¥ (see the supplementary material for the
formal definition of well-typed configurations). We can finish by using a lemma stating that for
any value configuration (v, o) such that ¥ r (v, o) : T & ¢, if the value type is discardable, i.e., - T
(which all basic types satisfy), the accompanying heap is also discardable, i.e., |=" o. O

The soundness for infinite-lifetime resources is more subtle, as it requires us to reason about
the potential infinite usage of resources in divergent executions. Our main observation is that
infinite-lifetime resources have only two possible usage behaviors under our type system: (1) being
implicitly discarded, i.e., not accessible from the diverging part of the computation; or (2) being
passed to reset infinitely. For the first case, we can separate the computation into some divergent
expression e and its continuation such that the resource of interest only appears in the continuation.
Then, our type system—more specifically, the rule (C_LET) and the assumption of the correctness
of termination annotations—ensures that the resource is discardable, even implicitly. For the second
case, we use a logical relation (deferred to supplementary material for its definition) to show that
the divergent computation is caused by infinitely nested calls of recursive functions. Combined
with the fact that our semantics decreases the timers for resources used inside later, we can then
show that the resource is passed to reset infinitely. This is because the timers cannot be counted
down infinitely—they are natural numbers. Thereby, the resource has to be reset eventually and
infinitely many times, which enables us to conclude that the resource satisfies the infinite-lifetime
criterion. We now present the statement of the soundness for infinite-lifetime resources.

Assumption 5.3 (Correctness of Termination Annotation). For the user-provided program e, its
sub-evaluations under termination annotation contexts will not diverge, i.e.,

VE €,0.(e,0) ~" (E[e = 4],0) = (€,0) v~
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where E is an evaluation context with the hole O, defined as:
E == O|letP=Eine| E: (| later(E) .

THEOREM 5.4 (SOUNDNESS: INFINITE-LIFETIME RESOURCES). For any well-typed program e such
that O |0 + e : B&J{, the infinite-lifetime criterion given in Section 2.2 is satisfied, i.e., for any
(¢, S,aieN) € Trace(e)™, either of the following holds:

o There exist some n € N and finite trace® € S suchthatVm> n.® = op;
o There exists some infinite trace 1 € S such thatVo € pref({x}).An € N. @ = o,

6 Discussion

This section describes the current limitations of our type system.

6.1 Support for Resource Aliasing

Our type system relies on uniqueness typing to support sound strong update of static resource
usage information, i.e., usage prophecies and timers. However, the current form of uniqueness
typing eliminates aliasing entirely, which would limit practical applicability. Various techniques
have been proposed in the literature to support strong update in the presence of aliasing [1, 9, 17,
18, 34, 37, 49]. We leave extending our temporal resource type system with these more advanced
typing mechanisms as future work.

6.2 Value-Dependent Timers

Our type system currently uses constant natural numbers as timers in temporal resource types.
This limits expressiveness: some correct programs become untypable. For example, consider the
function vyzi, below:

def .
Vreadn = rec f (n,x).if0 n < 0then xelse accreaq(x); f (n— 1, x)

Viain © nletx = new\?l,File iN Vreadn (7, X); aCCclose (x); drop(x) .
The recursive function vyeaqn reads a given file resource x at most n times (zero times when n is
negative). The main function vy,i, takes an argument n and calls Vyeagn With a newly opened file
resource x and n as input, and finalizes the file resource x after this invocation. Evidently, the
function is resource usage correct, because the file resource is finite-lifetime and produces a finite
trace of open - read” - close.

However, we cannot type the function with the current type system: no concrete number suffices
to be put in the placeholder ? for the timer in the allocation. Ideally, we would like a value-
dependent timer, i.e., newfl‘,ﬁle, where n is the argument of the main function vy,i,. We believe that
it is possible to enrich our type system with value dependency using standard refinement typing
approaches [42, 51, 56], and leave it as future work.

6.3 Implementation

As seen in the examples given in Section 4.4, to verify a program in our language currently requires
a lot of manual annotations, including explicit manipulation of unrestricted, discardable, and later
values, the use of reset constructs with timers, etc.

Ideally, we would like a surface language where programs only require minimal annotations
to verify temporal resource usage correctness, and other information is inferred by the type
checker. Also, the choice of static representation of finite trace sets used in usage prophecies (e.g.,
regular expressions, context-free grammars, logical formulas, etc.) could lead to a trade-off between
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expressiveness and automation of the verification process [52, 53]. We leave surface language
design and automated type checker implementation as future work.

7 Related Work

Type-Based Methods for Resource Usage Analysis. Type-based approaches for the resource usage
analysis has been extensively studied for decades [1, 2, 7, 17, 19, 22, 23, 43, 50]. Similar to our setting,
these approaches target languages with dynamic allocation of resources, where each resource
maintains a separate trace during its lifetime. The common feature of these approaches is that they
verify per-resource traces by enriching the types of resources with static usage information. For
example, in typestate systems [7], usage protocols are encoded as finite state machines embedded in
the types of resources, e.g., a file resource type could be refined into two states, e.g., File[opened]
and File[closed], to distinguish whether the file has been closed. Our type system can similarly
track resource states using usage prophecies (c.f. Section 3.2).

Another common feature is that, for modular reasoning in the presence of aliasing, these systems
apply substructural typing techniques, e.g., linear, uniqueness, or ordered typing, to support strong
update of tracked resource states. Safety of resource usage is guaranteed by checking the resource’s
state associated with the type before an effectful operation applies on the resource, and updating
the state afterwards. For example, in typestate systems, when a file is closed, its type changes from
File[open] to File[closed]. Our work can be aligned with this line of research as we adopt
uniqueness typing to forbid aliasing of resources, although our type system aims to verify a more
general problem, the temporal resource usage analysis. To the best of our knowledge, no existing
approach supports reasoning about potential infinite usage of resources. This limitation prevents
checking the correctness of infinite-lifetime resources. For example, it is not clear how to ensure a
file is eventually closed, or the lock is eventually released whenever it is acquired. This is the most
important difference between our type system and the existing ones.

Temporal Effect Systems. Temporal effect systems [21, 28, 36, 44, 45] verify temporal properties of
a global trace shared by an entire program, recording all the effectful operations performed during
the program execution. Therefore, temporal effect systems can only reason about per-resource
traces in a coarse-grained manner.

These systems reason about the infinite behaviors of a program by identifying the pattern of
divergence, i.e., the loop structures that may be repeated infinitely. Special typing rules for loop
constructs, like recursive functions, manifest the loop structures as effects, thereby enabling sound
temporal reasoning. For example, Nanjo et al. [36] utilize a greatest-fixpoint operator in the typing
rule for recursive functions to capture the potential infinite computation brought by infinitely
many recursive calls. In recent work, Sekiyama and Unno [45] generalize temporal effect systems to
support recursive types. The presence of recursive types makes identifying the pattern of divergence
harder, because loop structures are no longer lexical from the use of certain language constructs, e.g.,
recursive functions. To address this challenge, Sekiyama and Unno introduce a later modality [35] to
their temporal effect system, and use it to delimit the stages of infinitely-unfolded computations in
temporal effects. We follow Sekiyama and Unno’s approach to add a later modality to our language,
to make the progressive nature of divergent computation explicit, serving as a semantic foundation
of the timer mechanism.

Higher-Order Model Checking. Higher-order model checking [27, 38] (or HOMC for short), an
extension of model checking [11, 12] to higher-order programs, is a promising approach to fully au-
tomated temporal verification of higher-order programs (only with finite data domains). Kobayashi
[26] showed that HOMC can encode the resource usage analysis. It would be thus an interesting
future work to explore whether HOMC can also encode the temporal resource usage analysis. On
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the other hand, the encoding of the resource usage analysis in HOMC relies on global program
transformation. Therefore, while the encoding works well for closed programs, it is left unclear
how it can be applied to open programs. In contrast, whereas our temporal resource type system
requires type annotations, it can also verify open programs using type interfaces. Investing a
balance between automated and modular verification is also valuable to be explored.

Type-Based Productivity Guarantee. Programming in dependent type theory with coinductive
objects requires productivity, i.e., each element of a coinductive object must be produced in finite
time [47]. An established type-based approach to guaranteeing the productivity is to guard recursion
by a later modality [4, 13, 33, 35]. This technique has also been proven useful for verifying the
functional correctness of higher-order programs with coinductive objects [24], as well as liveness
properties of global traces [45]. In fact, the progressivity referred to in this paper can be regarded
as the productivity of traces on resources, and the present work can be seen as an application of
the type-based productivity guarantee to the verification of the infinite behavior of stateful objects.
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