
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Proof-Integrated Low-Level Programming Language with

Local, Operational, and Extensible Reasoning

ANONYMOUS AUTHOR(S)

Verifying the functional correctness of safety-critical software remains a grand challenge. Existing verifiers
for low-level pointer-manipulating programs fall into two camps: proof frameworks embedded in interactive
theorem provers offer powerful proving facilities but separate verification from programming; while assertion-
based verifiers enable verification in place but lack proof support.

We present C*, a proof-integrated language and verifier design that addresses this dichotomy between
programming and proving by bringing local, operational, and extensible reasoning into a C programming-
integrated interface. Specifically, C* introduces a capability-passing design where proof states are localized as
ghost variables called capabilities, enabling users to perform local reasoning steps by transforming capabilities
through proof code. C* provides a sound LCF-style proof interface in C for programming proof code and building
reusable proof libraries in the same language as for writing implementation code.

We implement C* as a prototype verifier for a subset of C and evaluate it on a suite of C programs from
existing benchmark. Our evaluation demonstrates that C* handles typical low-level program verification tasks
while effectively supporting local and operational reasoning and enabling users to extend proof support in C.

1 Introduction

Verifying the functional correctness of safety-critical software is a long-standing challenge [2, 4,
24, 26, 30, 32, 33, 53]. Over the past few decades, built upon the foundations of separation logics
and their variants [42, 46], a rich body of verifiers for low-level pointer-manipulating programs
has emerged [6, 9, 11, 12, 16, 18, 23, 28, 29, 34, 39, 41, 44, 49, 52]. These verifiers primarily follow
one of two designs, creating a dichotomy between proof-centric and program-centric verification.

• Proof-Centric Verifiers. These verifiers (e.g., VST [9] and Iris [29]) are program-logic frame-
works embedded in interactive theorem provers (e.g., Rocq [7]), inheriting their highly
expressive specification logics and comprehensive proving facilities. They provide users
with complete control over the proof state and are extensible in terms of proof support via
tactic languages [15] or programming upon a proof interface [20].

• Program-Centric Verifiers. These verifiers (e.g., VeriFast [28] and CN [41]) follow the Hoare
tradition [27] of decorating programs with intermediate assertions as a proof outline. A
verification algorithm [17] reconstructs full program-logic derivations from decorated
programs, generates missing proof steps as verification conditions (VCs), and attempts to
discharge them automatically through heuristics, proof search, and SMT solving.

We argue that this design dichotomy between programming-integration and powerful proving
is artificial and hinders the development of verified software. Program-centric verifiers are more
developer-friendly, but they lack two key features of their proof-centric counterparts:

• Lack of Local and Operational Reasoning. Current program-centric verifiers treat the proof
state as an implicit global context. Users perform declarative reasoning steps by annotating
assertions, hoping the verifier can prove an entailment from the preceding proof state to
the assertion. They cannot perform local and operational reasoning by giving proofs directly,
such as “rewrite a specific part of the proof state using this equational assumption.” By not
requiring the resulting assertions upfront, this local and operational style of reasoning is
more programmatic and robust to changes in the implementation code [23].

• Lack of Extensible Proof Support. The inherent incompleteness of automatic VC discharging
leads to the need for users to perform manual reasoning steps. Some program-centric
verifiers (e.g., VeriFast and CN) support a fixed set of proof directives, such as fold or

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Anon.

unfold of logical predicates or apply lemmas. However, they do not provide users with an
easy way to extend this support. In contrast, proof-centric verifiers allow users to package
high-level reasoning patterns as reusable proof procedures.

To bridge this gap, we propose C*, a proof-integrated language design and verifier for (a subset of)
C. Our goal is to bring the local, operational, and extensible reasoning of proof-centric frameworks
into a C programming-integrated interface. There are two major challenges:

• Localizing and Manifesting the Proof States. How do we break up the implicit, global proof
state of current program-centric verifiers into explicit, localized fragments that allow opera-
tional updates by proof? We need a language design that reifies the proof state locally as
resources, and soundly tracks these resources and involved logical variables (e.g., universal
and existential quantifiers) across control-flow paths, while also allowing users to write
proof code to update them.

• Taming Unsafe C Code in Proof Programming. How do we provide extensible proof support
in a C programming-integrated design? The natural answer is to let users write proof code
in C itself. The challenge is that the established LCF architecture [22] for sound proof
programming relies on enforcing type abstraction [21] to protect the proof kernel from
arbitrary user proof code. But the low-level nature of C programming (e.g., direct memory
manipulation and unchecked type casts) offers no such type safety guarantees.

To address the first challenge, we propose a capability-passing language design (Section 3).
We enrich C with two kinds of ghost entities: capabilities and reasoning blocks. Capabilities are
separation-logic assertions explicitly tracked as ghost variables in a flow-sensitive manner. Our
language design ensures that at a program point, each available capability is a fragment of the
global proof state, and the separating conjunction of all available capabilities forms the whole
proof state. These capabilities can be passed around separately, clearly manifesting local reasoning
dependencies. Reasoning Blocks are ghost constructs that allow users to transform capabilities by
providing proof code. These blocks explicitly consume capabilities, run the provided proof code to
perform logical deductions, and produce new capabilities. These reasoning blocks can be either
declarative (stating the produced assertions upfront) or operational (programmatically calculating
the produced assertions from the consumed ones).

To enable users to write proof code in C within reasoning blocks—as well as address the second
challenge—we devise a sound mechanism for C-programmable proof support (Section 4).
We provide an LCF-style proof interface [20, 38] in C, with opaque types like thm (a proved
theorem) and term (a logical term), allowing users to manipulate assertions and theorems as data
in reasoning blocks. The interface provides term-manipulation utilities as well as proof functions
that implement logical inference rules to compute theorems. To ensure soundness in the context
of unsafe C programming, we adapt the longstanding LCF architecture by protecting the proof
interface through process isolation (instead of type abstraction): user-written C proof code and the
trusted proof kernel run in separate processes, communicating through opaque handles that are
created and stored exclusively by the kernel. This design protects the proof kernel from arbitrary C
code, ensuring theorems computed by user code are always valid.
We implement a prototype verifier for C* and evaluate it on a suite of C programs from an

existing benchmark [23] (Section 5). Our evaluation demonstrates that C* successfully verifies
all benchmark programs, which span simple algorithms, low-level memory manipulations, and
linked data structures. The verification leverages C*’s support for local and operational reasoning:
our metrics show that reasoning blocks typically operate on only a small fraction of the available
proof state, and operational reasoning blocks are frequently employed throughout the verification
process. These verifications are supported by user-extensible proof libraries written in C: we build

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

A Proof-Integrated Low-Level Programming Language with Local, Operational, and Extensible Reasoning 3

1 int32_t reverse(int32_t p) {

2 int32_t ret = 0;

3 while (p) {

4 int32_t t;

5 t = load32(p+4);

6 store32(p+4, ret);

7 ret = p; p = t;

8 }

9 return ret;

10 }

(a)

NULL NULL

ret

NULL

NULL

NULL

NULL

p

ret

ret p t

p

t

(b)

Fig. 1. The C function reverse and its intuitive correctness argument in a loop iteration.

general-purpose libraries for common reasoning patterns (e.g., rewriting strategies and backward
reasoning tactics) and domain-specific libraries for linked data structures and array reasoning,
demonstrating the practical benefits of C-programmable proof support.

To sum up, in this work, we make the following contributions:
• We propose C*, a proof-integrated language design that unifies program-centric verification
with explicit, local, and operational reasoning by proof. We devise its syntax-guided typing
rules and prove its soundness with respect to separation logic.

• We devise a sound mechanism for C-programmable proof support via process isolation and,
based on it, implement a prototype verifier for C*.

• We evaluate C* on a suite of C programs, demonstrating its ability to handle typical low-level
program verification tasks and its benefits in enabling local reasoning and building reusable
proof libraries in C.

2 Overview of C*: A Guided Tour

This section provides an overview of C*, demonstrating its capability-passing verification style and
its C-programmable proof support through a running example.

Running Example: In-Place List Reversal. We use the classic pointer-manipulating algorithm of
reversing a singly linked list in place as our running example. Its C implementation is given in
Figure 1(a). C* adopts a subset of C with a single integer type int32_t representing both integers and
pointers (using a concrete memory model). A node is represented on the heap as two consecutive
integers, storing the data and the pointer to the next node, respectively.
The loop maintains the invariant that the list is split into a processed part (the reversed prefix

pointed to by ret) and a remaining part (the suffix pointed to by p). The loop body, illustrated in
Figure 1(b), makes progress in three steps: saving the next node address in t (line 5), prepending
the current node to the processed part (line 6), and updating p and ret to the new heads (line 7).
We present our verified C* version1 of reverse in Figure 2 with slightly prettified syntax.2 It

manifests local reasoning dependencies as capability-passing and logical deductions as proof code,
interspersing verification clauses with the original implementation code. We explain its verification
in the following paragraphs.
1Full code and supporting proof libraries are available in the supplementary material.
2We show logical terms in sans-serif, italic font (e.g., term) and put capabilities in boxes (e.g., own_list:sll_at p l).

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Anon.

1 forall(p: int,l: int list) parameter(i32[p]) require(own_list:sll_at p l) // input specification

2 exist(ret: int) return(i32[ret]) ensure(own_rev_list:sll_at ret (rev l)) // output specification

3 int32_t reverse(alloc(p_var) int32_t p) {

4 alloc(ret_var) int32_t ret=0;

5 // establish invariant by producing required capabilities

6 produce(own_rev_list:sll_at 0 []) {|DC_REWRITE(ThmList(sll_at_def)); |}
7 produce(inv:fact(l=app (rev []) l)) {|DC_REWRITE(ThmList(rev_def, app_def)); |}
8
9 exgiven(ret: int,p: int,l1: int list,l2: int list)

10 invariant(ret_var:i32_at &ret ret , p_var:i32_at &p p ,

11 own_rev_list:sll_at ret l1 , own_list:sll_at p l2 , inv:fact(l=app (rev l1) l2))

12 while (p pathcond(cond_p)) {

13 alloc(t_var) int32_t t=0;

14
15 consume(own_list , cond_p) // split ownership of the non-empty, unprocessed part

16 given(next: int,data: int,tail: int list) produce(l2_is_cons , data_mem , next_mem , own_list)

17 {|OP_APPLY(sll_cons_destr, TermList(own_list, cond_p)); |}
18
19 t = load32(p+4 check(next_mem));

20 consume(next_mem) produce(next_mem) store32(p+4, ret);

21
22 // merge the new node into the reversed prefix

23 consume(data_mem , next_mem , own_rev_list) produce(own_rev_list)

24 {|OP_APPLY(sll_cons_constr, TermList(data_mem, next_mem, own_rev_list)); |}
25
26 ret = p; p = t; // re-establish invariant

27 consume(inv , l2_is_cons) produce(inv:fact(l=app (rev (data::l1)) tail))

28 {|DC_REWRITE(ThmList(..., gsym_rule(by_fact(l2_is_cons)), by_fact(inv))); |}
29 }

30 consume(cond_p , own_list) produce(l2_is_nil) // destruct empty ownership

31 {|OP_APPLY(sll_nil_destr, TermList(own_list, cond_p)); |}
32 consume(l2_is_nil , inv) produce(l1_is_rev:fact(l1=rev l)) // list reasoning

33 {|DC_REWRITE(ThmList(by_fact(inv), by_fact(l2_is_nil), app_nil, rev_rev)); |}
34 consume(own_rev_list , l1_is_rev) produce(own_rev_list) // produce output capability

35 {|OP_REWRITE(ThmList(by_fact(l1_is_rev)), TermList(own_rev_list)); |}
36 return ret; // return result as well as the required capability

37 }

Fig. 2. Verified reverse in C*.

Function Specification. The function input and output specifications are given in lines 1 and 2,
respectively. The forall clause introduces universally quantified logical variables: p of type int (an
unbounded mathematical integer) and l of type int list (an inductive list of integers). The parameter
clause assigns a refined singleton type i32[p] to the parameter p, relating its initial value to the
logical variable p. The require clause specifies additional preconditions to invoke the function
as ghost capability inputs. Capabilities are labeled separation-logic assertions that reify localized

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

A Proof-Integrated Low-Level Programming Language with Local, Operational, and Extensible Reasoning 5

fragments of the global proof state. Here, own_list:sll_at p l reifies that list l is stored at address
p as a singly linked list; this capability will be available when verifying the function body and can
be passed around explicitly or transformed in reasoning steps.

The output specification (line 2) must be satisfied on return. Symmetric to the input specification,
exist introduces existential variables, return specifies the returned value, and ensure specifies
additional guarantees as ghost capability outputs. Here, it returns to the caller with a heap location
ret and a capability own_rev_list:sll_at ret (rev l) , stating the reversed list is stored at ret .

User-Defined Specification Functions and Predicates. Specification functions and predicates are
defined in our specification logic, a polymorphic higher-order logic [3] with a bespoke separation
logic theory. For example, rev is defined by equations rev []=[] and rev (x::l)=app (rev l) [x]. The
predicate sll_at is defined by

sll_at p [] = fact(p=0) and sll_at p (h::t) = ∃q:int. i32_at p h ★ i32_at (p+4) q ★ sll_at q t ,

where ★ is separating conjunction, i32_at addr val is a basic points-to predicate that asserts val
(within the range of int32_t) is stored at addr , and fact(p) embeds a pure proposition p into
separation logic while asserting an empty heap. Users can extend data types, functions, and
predicates on a per-module basis via definitional mechanisms in our C proof interface (see Section 4).

Capability-Passing: Allocation and Assignment of Local Variables. Each parameter and local
variable declaration is accompanied by an alloc clause that associates a capability representing
ownership of the variable.3 For example, in line 3, p_var is associated with parameter p, initially
set to i32_at &p p, where &p is the address of p and the initial value p is read from the parameter type
i32[p]. On assignment, the type checker implicitly consumes and updates the variable’s capability,
tracking its current value. For example, assigning to t in line 19 transforms t_var:i32_at &t 0 to
t_var:i32_at &t next , reflecting that t now stores the next node pointer loaded from load32(p+4).

Capability-Passing: Path Conditions. Conditional tests (e.g., in if or while statements) generate
capabilities indicating the truth or falsity of the condition. Unlike traditional assertion-based verifiers
where these path conditions are gathered implicitly in the internal proof state without explicit ways
to refer to them, in C* they are explicitly bound to capabilities via a pathcond clause. The nullity
test on p in line 12 creates cond_p , bound to fact(p≠0) inside the loop body and fact(p=0) at loop
exit, allowing explicit reference in reasoning steps. For example, in line 15, cond_p serves as an
explicit reasoning dependency to transform own_list via the unfolding lemma sll_cons_destr

(stating that a linked list at non-null pointer address can be split into a head node and the remaining
list); see the Operational Reasoning Steps paragraph below for details on this transformation.

Capability-Passing: Function Calls. Function calls pass required capabilities as ghost arguments
with a consume clause and ensured capabilities as ghost returns with a produce clause. For example,
the primitive function store32 (with C prototype void store32(int32_t,int32_t)) is specified as:

forall(p: int,w: int,v: int) parameter(i32[p],i32[v]) require(in:i32_at p w) ensure(out:i32_at p v).

When store32 is called (e.g., line 20), call sites provide a capability matching the assertion of in
as input (universal quantifiers are automatically instantiated) and receive a capability instantiating
the assertion of out as output. The general form of function calls also allows manual instantiation
of universal quantifiers and binding of output existential quantifiers (see Section 3).

3Technically, for uniformity, we treat all program variables as addressable, i.e., they can be taken addresses and aliased.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Anon.

void DC_REWRITE(thm* ths)

{ GN root = Init_goal(get_goal());

GN g = FACTS_INTRO_TAC(root);

g = REWRITE_LIST_TAC(g, ths);

g = HCLEAN_TAC(g); AUTO_FRAME_TAC(g);

by_using(Solve(root)); }

(a) Declarative rewrite.

void OP_REWRITE(thm* ths, term* tms) {

term ant = list_mk_hsep(tms);

thm eq = rewrite_list(ths, ant);

thm trans = eq2ent(eq);

by_using(trans);

}

(b) Operational rewrite.

Fig. 3. Example proof functions used in declarative and operational reasoning blocks.

Pure functions that do not modify the proof state can be called under expression contexts; we
call these operator functions. For example, the primitive function load32 is specified as:

forall(p: int,v: int) parameter(i32[p]) check(in:i32_at p v) return(i32[v]).

Note that the require and ensure clauses are replaced by a check clause, specifying the capabilities
that are required and produced as is. It is invoked in line 19, where a check clause is put inside the
parameter list.

Loop Invariants. The separate pieces of information in the informal loop invariant are formalized
as capabilities in the invariant clause (lines 10-11): own_rev_list asserts ownership of the
processed part l1 at ret; own_list asserts ownership of the remaining part l2 at p; inv relates l1,
l2, and initial list l; ret_var and p_var represent ownership of the local variables ret and p. The
exgiven clause (line 9) abstracts current values of p, ret, and lists l1, l2 as existential variables shared
among invariant capabilities, and immediately introduces them into scope for future reference.

Reasoning Blocks: Transforming Capabilities by Proof. Reasoning blocks perform local reasoning
steps: explicit reasoning dependencies are specified in consume and produce clauses, and the rest
of capabilities in scope remain unchanged, reflecting the framing principle of separation logic.
The proof code that performs logical deductions on capabilities is wrapped in {| . . . |} delimiters.
Reasoning blocks come in two styles: declarative ones (e.g., lines 6,7, 27-28) annotate produced
capabilities with assertions explicitly, while operational ones (e.g., lines 15-16, 23-24) derive output
assertions by proof code, requiring only names of the produced capabilities.

Declarative Reasoning Steps: Establishing the Loop Invariant. To see declarative reasoning steps
in action, consider the initial establishment of the loop invariant. Initially, the processed part
is empty and the remaining part is the entire input list (represented by the required capability
own_list), hence the invariant is established by producing the empty list ownership capabil-
ity own_rev_list:sll_at 0 [] and the fact inv:fact(l=app (rev []) l) . The declarative reasoning
blocks produce these capabilities in lines 6 and 7, respectively.
Take, for example, the reasoning block in line 6. Since no input capabilities are consumed, the

proof obligation is emp ⊢ sll_at 0 [], where ⊢ stands for separation-logic entailment and emp asserts
an empty heap with no additional information. This entailment can be directly solved by a proof
function DC_REWRITE (abbreviation for “declarative rewrite”). Its definition is shown in Figure 3(a),
which builds upon our library for goal-directed proof tactics (see Section 4). It encapsulates the
automation process of (1) fetching the current proof obligation using get_goal() (which is possible
because a declarative block requires all output capabilities to be annotated with assertions upfront)
and initializing it as a goal (stored at root of type GN for goal nodes), (2) performing iterative
rewriting using the input equational theorems (here, the definition of sll_at), clean-up of trivial

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

A Proof-Integrated Low-Level Programming Language with Local, Operational, and Extensible Reasoning 7

conjuncts (e.g., emp), and cancellation of matching separating conjuncts, until the goal is solved,
and (3) returning the proven theorem using by_using.

Operational Reasoning Steps: Splitting and Merging of Ownership of the Linked Lists. To see
operational reasoning steps in action, consider the splitting and merging of ownership of the linked
lists in lines 15-17 and 23-24. These steps parallel the dynamic update in line 20, i.e., a node is picked
from the remaining part and prepended to the processed part. For example, lines 15-17 perform the
splitting of ownership of the remaining part by applying the unfolding lemma sll_cons_destr to
own_list , which proves the following entailment (its proof is shown in Section 4):

∀x, l. (sll_at x l ★ fact(x≠0) ⊢ ∃y, h, t . fact(l=h::t) ★ i32_at x h★ i32_at (x+4) y ★ sll_at y t) .
The function OP_APPLY (abbreviation for “operational apply”) performs automatic instantiation of
the lemma by matching the separating conjuncts in the antecedent against the assertions recorded
in the input capabilities and produces the resulting transformation entailment theorem:

sll_at p l ★ fact(p≠0) ⊢ ∃y, h, t . fact(l=h::t) ★ i32_at p h★ i32_at (p+4) y ★ sll_at y t .

Our verifier will check the produced entailment theorem has an antecedent that matches the input
capabilities; after that, the existential variables in the consequent are introduced as logical variables
next , data, tail (as per the given clause) and the separating conjuncts in the consequent are bound to
the capabilities l2_is_cons , data_mem , next_mem , and own_list (as per the produce clause).
Note that no output assertions are stated in operational blocks—assertions recorded by output
capabilities are “calculated” from the input capabilities by proving an entailment theorem.

Reasoning Steps: Returning from the Function. After the loop exits, we perform several more steps
of operational destruction of empty list ownership and rewriting of the remaining capabilities
using equational facts. For example, in lines 34-35, we rewrite own_rev_list:sll_at ret l1 into
the desired form own_rev_list:sll_at ret (rev l) specified in the ensure clause using the fact that
l1_is_rev:fact(l1=rev l) . This operational rewriting step is performed by the function OP_REWRITE

in Figure 3(b), which first constructs a symbolic heap from the input assertions tms as the antecedent
(using list_mk_hsep to build up the term with separating conjunction in a right-associative manner),
then performs rewriting on it using the interface rewrite_list to produce an equality eq between
the antecedent and the rewritten consequent, and finally transforms this equation into an entailment
theorem by calling eq2ent and returns it (i.e., sll_at ret l1 ⊢ sll_at ret (rev l)) using by_using.

3 C* Language Design

This section presents the core design of C*. We introduce the overall structure and general concepts
underlying our language design in Section 3.1. We then present the capability-passing language
constructs of C* in Section 3.2. We describe the formalization of C* in Section 3.3. Full grammar
definitions, typing rules, and proofs of meta-properties can be found in the supplementary material.

3.1 General Concepts

Our proof-integrated language has three layers: the implementation layer, the specification layer,
and the proof layer. We describe each layer in the following.

Implementation Layer: A Subset of C for Low-Level Programming. Following Gruetter et al. [23],
implementation code is written in a subset of C where all variables have type int32_t, representing
both integers and pointers. Expressions must be pure (no side effects on memory).
We support: pointer arithmetic (i.e., calculated addresses), address-of (&e), dereferencing (*e),

blocks (which introduce local scopes), and structured control-flow constructs (if, while, continue,

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Anon.

break, return). Fine-grained byte-level memory access is supported via primitive functions like
store8 and load8, with specifications matching the desired dynamic semantics. This subset is
minimal yet practical enough for writing interesting low-level heap-manipulating programs.

Specification Layer: Higher-Order Logic with Separation-Logic Theory. Our design maintains a
clear distinction between (static) logical terms and (dynamic) program expressions; hence, terms in
the specification denote immutable, mathematical values, independent of the program state.

For this specification layer, we choose a standard higher-order logic (HOL) [3] for its simplicity
and expressiveness, and axiomatize a separation-logic theory (with a concrete memory model)
for heap-dependent assertions. Every logic term has a sort, which can be annotated explicitly by
syntax term:sort . To list a few examples: integer terms have sort int , e.g., 42, x+y ; logical functions
have arrow sorts, e.g., rev: int list→int list; boolean values and propositions have sort bool, e.g.,
false, a quantified proposition ∀x:int. ∃y:int. y>x , a separation-logic entailment P ★ Q ⊢ Q ★ P ;
separation-logic assertions have sort hprop (roughly understood as heap→bool), e.g., an empty
heap assertion emp, an embedded pure proposition fact(p:bool), a separating conjunction P ★ Q, a
basic points-to predicate i32_at addr val.

Proof Layer: Full-Featured C with an LCF Proof Interface. Our proof layer shares the same program-
ming language as the implementation layer, C. More precisely, the proof language is full-fledged C
with an LCF-style programmable proof interface for HOL (detailed in Section 4). Theoretically, our
type checker is agnostic of the concrete form of proof code (as long as it establishes the required
entailment theorem; see Section 3.3); nevertheless, this choice allows users to compose proof code
and encapsulate reasoning patterns in the same general-purpose programming language as for
writing implementation code.

Capabilities: Labeled Assertions as Linear Resources. A capability is a separation-logic assertion4
tracked by a label in a flow-sensitive manner, reifying information known to hold at a program point
(e.g., ownership predicates, path conditions, or pure logical facts). Our capability-passing language
design maintains the invariant that the proof state during verification is the (iterated) separating
conjunction of all capabilities available at each program point. Capabilities thus represent localized
fragments of the global proof state. Due to the resource-aware nature of separation-logic assertions,
capabilities must be used linearly: a passed-in capability (via consume) is no longer available unless
explicitly returned and updated (via produce). Capabilities cannot be duplicated or discarded at
will except when recording a pure assertion [42], e.g., fact(p=0). Capabilities can be transformed by
sound logical deductions via reasoning blocks.
Our notion of capability is inspired by the L3 language [1] (and related work [10, 47]), where

capabilities are linear ghost variables reifying ownership for sound strong updates of reference
types in a higher-order functional setting. In C*, capabilities track both ownership and content of
memory locations for functional-correctness verification of first-order, low-level programs.

3.2 Language Constructs

We now describe the key constructs of C* with their concrete syntax and their static semantics in
prose descriptions. Our syntax is a lightweight extension of C, where all verification clauses are
interleaved in normal C language constructs as special comments wrapped in /*@...@*/ delimiters.
This design allows verified C* programs to be compiled directly using standard C compilers. To
make the distinction between different language layers explicit, our syntax requires wrapping
logical terms in backticks `...` and all proof code in {|...|} delimiters. We use the following
4Assertions recorded in capabilities need not be simple ownership predicates; they can have arbitrary internal structure
(e.g., a disjunction or a separating implication).

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

A Proof-Integrated Low-Level Programming Language with Local, Operational, and Extensible Reasoning 9

meta-variable conventions in this subsection: 𝑐, 𝑙 for capability labels; 𝑢, 𝑣 for general HOL terms;
𝑃,𝑄 for separation-logic assertions (i.e., terms of sort hprop); and 𝑠, 𝑡 for arbitrary HOL sorts.

__NORMAL__

/*@ forall(`𝑥1 : 𝑠1`, . . .) @*/

/*@ parameter(i32[`𝑢1`], . . .) @*/

/*@ require(𝑐1:`𝑃1`, . . .) @*/

/*@ exist(`𝑦1 : 𝑡1`, . . .) @*/

/*@ return(i32[`𝑣`]) @*/

/*@ ensure(𝑙1:`𝑄1`, . . .) @*/

int32_t 𝑓 (int32_t, . . .);

Fig. 4. Function declaration.

Function Declarations. A function declaration in C* starts with
a __NORMAL__ token (for parsing purposes) followed by six clauses
specifying its behavior: The first three clauses specify function
inputs: forall introduces logical-layer parameters (universal quan-
tifiers); parameter assigns each implementation-layer parameter a
singleton refined type relating its initial value to a logical term; and
require specifies required capability parameters (preconditions).
The last three clauses specify function outputs: exist introduces
logical return variables (existential quantifiers); return specifies
the computational return value; and ensure specifies guaranteed capability outputs (postconditions).
A function definition is a declaration followed by a body; moreover, since parameters are treated as
local variables, each computational parameter is accompanied by an alloc clause.

/*@ instantiate(`𝑢1`, . . .) @*/

/*@ consume(𝑐1, . . .) @*/

/*@ given(`𝑦1`, . . .) @*/

/*@ produce(𝑙1, . . .) @*/

𝑒𝑙 = 𝑓 (𝑒1, . . .);

Fig. 5. Function call.

Function Calls and Assignments. Function call statements use
conventional C syntax 𝑒𝑙 = 𝑓 (𝑒1, . . .) for passing computational
arguments and receiving return values. Corresponding to func-
tion specifications, function calls additionally pass logical terms
via instantiate clauses (instantiating universal quantifiers; auto-
inferred by the type checker if omitted) and required capabilities
via consume clauses. They bind return logical variables via given clauses (eliminating existential
quantifiers and introducing them into scope until the end of the enclosing block) and guaranteed
capabilities via produce clauses. The assignment to 𝑒𝑙 implicitly consumes the capability for the
l-value (i.e., the i32_at predicate for the designated address) and produces a new capability with
updated content. An assignment statement is a degenerate case of a function call.

__OPFUN__

/*@ forall(`𝑥1 : 𝑠1`, . . .) @*/

/*@ parameter(i32[`𝑢1`], . . .) @*/

/*@ check(𝑐1:`𝑃1`, . . .) @*/

/*@ return(i32[`𝑣`]) @*/

int32_t 𝑓 (int32_t, . . .);

Fig. 6. Operator-function decla-
ration.

Operator Functions. Operator functions are a subset of functions
that can be invoked directly in expression contexts. Their declara-
tion syntax starts with a __OPFUN__ token. Since C* requires pure
expressions, operator functions omit require and ensure clauses;
instead, a check clause specifies capabilities that must be available
(but are not consumed or modified). We disallow the exist clause
as well, yielding simpler call syntax 𝑓 (𝑒1,. . ./*@ check(𝑐1,. . .)@*/).
In fact, pointer dereferencing and all C arithmetic and comparison
operators in C* are syntactic sugars for built-in operator functions with appropriate check clauses.5
For example, 𝑒1+𝑒2 desugars to op_add(𝑒1,𝑒2/*@ check(c) @*/), where c should record the fact that
the result does not overflow. This capability is filled in by the type checker when desugaring the C
operator syntax, and can be passed by users explicitly if desired.

/*@ consume(𝑐1, . . .) @*/

/*@ given(`𝑦1`, . . .) @*/

/*@ produce(𝑙1, . . .) @*/

/*@ {| proof code |} @*/

Fig. 7. Reasoning block (opera-
tional).

Reasoning Blocks. The syntax of reasoning blocks resembles that
of function calls, but instead of performing dynamic computation at
the implementation level, it performs logical deductions on capabili-
ties by proof code (wrapped inside {|...|}). Consumed capabilities
are available in the proof code as term variables, recording asser-
tions. The proof should establish a separation-logic entailment of

5We do not use short-circuiting semantics for the && and || operators.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Anon.

the following form and pass it to the type checker by by_using:

𝑃1 ★ · · ·★ 𝑃𝑚 ⊢ ∃𝑥1 : 𝑠1, . . . , 𝑥𝑘 : 𝑠𝑘 .𝑄1 ★ · · ·★𝑄𝑛 .

The type checker receives the theorem and ensures that the conjuncts 𝑃1, . . . , 𝑃𝑚 in the antecedent
match the capabilities provided by the consume clause, and for the consequent, binds existential
variables 𝑥1 : 𝑠1, . . . , 𝑥𝑘 : 𝑠𝑘 to the given clause and assigns the resulting conjuncts𝑄1, . . . , 𝑄𝑛 to the
capabilities named in the produce clause (and checks conformance if assertions are already given).
There are two complementary styles of reasoning blocks. Declarative blocks state assertions

in the resulting capabilities upfront and generate a proof obligation, which can be fetched using
get_goal(). The proof code inside usually performs backward reasoning (also known as goal-directed
reasoning), i.e., recursively decomposing a proof obligation into smaller ones until all sub-goals are
trivially solvable. Alternatively, operational blocks derive output assertions by performing explicit
logical deductions on input capabilities, without stating them upfront. The proof code inside usually
performs forward reasoning, i.e., deriving a theorem from existing assumptions and theorems by
sound proof rules. We describe our proof interface for backward and forward reasoning in Section 4.

/*@ alloc(𝑐) @*/

int32_t 𝑥 = 𝑒;

Fig. 8. Variable declaration.

Local Variables. Each local variable and function parameter dec-
laration is associated with a capability representing its ownership
via an alloc clause. If the initializer 𝑒 has type i32[`𝑣`], capability
𝑐 is initialized to `i32_at &𝑥 𝑣`. The type checker ensures all local
variable capabilities are deallocated when the variable’s scope ends (block or function scope),
preventing unsafe dereferencing of dangling pointers to deallocated stack frames.

/*@ witness(`𝑢1`, . . .) @*/

return 𝑒;

Fig. 9. Return.

Jump Statements. A return statement returns both a computa-
tional expression 𝑒 and the capabilities specified in the enclosing
function’s ensure clause. The type checker retrieves these capabili-
ties from the current typing context and verifies that all remaining
capabilities can be discarded (e.g., local variable capabilities or pure facts). Similar to the optional
instantiate clause in function calls, a witness clause can explicitly provide witnesses for existential
variables in the function specification (automatically inferred by the type checker if omitted). Other
jump statements (break and continue) are handled similarly, with different expected available
capabilities.

if (𝑒 /*@ pathcond(𝑐) @*/)

{ 𝑠𝑡𝑚𝑡𝑡 . . . }

else
{ 𝑠𝑡𝑚𝑡𝑓 . . . }

/*@ exgiven(`𝑥1 : 𝑠1`, . . .) @*/

/*@ join(𝑐1:`𝑃1`, . . .) @*/

Fig. 10. Two-branch conditional.

Conditional Statements. An if statement introduces flow-
sensitive facts via a pathcond clause, recording that the con-
dition holds (i.e., is non-zero) or does not hold (i.e., is zero)
along each branch. At the control-flow merge point, a join

clause explicitly specifies which capabilities from both branches
are merged. The type checker ensures that at the end of both
branches: (1) merged capabilities record the same assertion,
(2) these assertions are well-formed in the outer scope, i.e., no escaping logical variables
or local variable addresses, and (3) remaining capabilities in either branch are discardable.
An additional exgiven clause may be used to abstract branch-specific details at the merge point as
existential quantifiers (this typically requires annotating the capabilities in the join clause with
explicit assertions to perform the correct abstraction), and immediately introduce them into scope
until the end of the enclosing block (the same functionality as the given clause in function calls
and reasoning blocks).

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

A Proof-Integrated Low-Level Programming Language with Local, Operational, and Extensible Reasoning 11

Identifiers 𝑥, 𝑓 Operator Symbols op Literals 𝑛 ∈ [−231, 231 − 1]

Expressions 𝑒 ::= 𝑛 | 𝑥 | &𝑒 | ∗𝑒 | op(®𝑒)
Statements 𝑠 ::= skip | 𝑠1; 𝑠2 | return 𝑒 | 𝑒𝑙 = 𝑓 (®𝑒)

| if 𝑒 then 𝑠1 else 𝑠2 | while 𝑒 do 𝑠
Declarations 𝑑 ::= i32 𝑥 = 𝑒

Functions fun ::= i32 𝑓
(−−−→
i32 𝑥

)
®𝑑 𝑠

Programs 𝑝 ::=
−−→
fun

Fig. 12. Abstract syntax of the C subset used by C*.

Capability Variables 𝑙 Logic Variables 𝛼, 𝛽

Logic Sorts S ::= int | bool | hprop | . . .
Logic Terms 𝑤, 𝑃,𝑄 ::= 𝛼 | 42 | true | emp | fact(𝑤 : bool) | 𝑃 ★𝑄 | i32_at(𝑤1,𝑤2) | . . .
Capabilities 𝜅 ::= 𝑙 : 𝑃
Expressions 𝑒 ::= 𝑛 | 𝑥 | &𝑒 | ∗𝑒 | check(®𝜅) op(®̂𝑒)
Statements 𝑠 ::= skip | 𝑠1; 𝑠2 | witness(®𝑤) return 𝑒

| instantiate(®𝑤) consume(®𝜅𝑟) given(®𝛼) produce(®𝜅𝑒) 𝑒𝑙 = 𝑓 (®̂𝑒)
| if 𝑒 pathcond(𝑙) then 𝑠1 else 𝑠2 exgiven(®𝛼) join(®𝜅)
| exgiven(®𝛼) invariant(®𝜅) while 𝑒 do 𝑠
| consume(®𝜅𝑟) given(®𝛼) produce(®𝜅𝑒) {|proof|}

Declarations 𝑑 ::= alloc(𝜅) i32[𝑤] 𝑥 = 𝑒

Functions ˆ
fun ::= forall(®𝛼) require(®𝜅𝑟) exist(®𝛽) ensure(®𝜅𝑒)

i32[𝑤𝑟] 𝑓
(−−−−−−−−−−−−−−−→
alloc(𝜅) i32[𝑤] 𝑥

) ®̂
𝑑 𝑠

Programs 𝑝 ::=
−−→̂
fun

Fig. 13. Abstract Syntax of C*.

/*@ exgiven(`𝑥1 : 𝑠1`, . . .) @*/

/*@ invariant(𝑐1:`𝑃1`, . . .) @*/

while (𝑒 /*@ pathcond(𝑐) @*/)

{ 𝑠𝑡𝑚𝑡 . . . }

Fig. 11. While loop (with no
break).

Iteration Statements. A while statement requires an invariant

clause specifying the loop invariant (essentially, a join clause
specifically at the loop head); it may also use exgiven to introduce
existential variables and bring them into scope. Similar to if, the
loop condition uses a pathcond clause recording that the condition
holds within the loop body and does not hold on exit. The type
checker ensures the loop invariant is maintained when executing continue or falling through to
the next iteration. The general form allowing break inside the loop body also requires a join clause
at the loop exit point and is deferred to the supplementary material.

3.3 Formalization

This section formalizes the typing rules of C* and proves its meta-properties. For simplicity of
presentation, we assume all functions have return values and all capabilities are assertion-annotated;
we omit the treatment of blocks and break and continue statements.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Anon.

®𝜅 =
−−→
𝑙 : 𝑃 Λin; Σin ⊢rexp 𝑒 : i32[𝑤]

Λin; Σin, 𝑙𝑝 : fact(𝑤 ≠ 0) | 𝐾ret ⊢stmt 𝑠𝑡 : Λout𝑡 ; Σout𝑡
Λin; Σin, 𝑙𝑝 : fact(𝑤 = 0) | 𝐾ret ⊢stmt 𝑠𝑓 : Λout𝑓 ; Σout𝑓

∃𝜎𝑡 . dom(𝜎𝑡) = { ®𝛼} ∧ Σout𝑡 =
−−−−−−→
𝑙 : 𝜎𝑡 (𝑃), Σ′

𝑡 ∧ discardable(Σ′
𝑡)

∃𝜎𝑓 . dom(𝜎𝑓) = { ®𝛼} ∧ Σout𝑓 =
−−−−−−−→
𝑙 : 𝜎𝑓 (𝑃), Σ′

𝑓
∧ discardable(Σ′

𝑓
)

Λin; Σin | 𝐾ret ⊢stmt if 𝑒 pathcond(𝑙) then 𝑠𝑡 else 𝑠𝑓 exgiven(®𝛼) join(®𝜅) : Λin, ®𝛼 ; ®𝜅

Fig. 14. Typing rule of if statements. Well-formedness checks are omitted for brevity.

3.3.1 Syntax. We present the abstract syntax of C* (Figure 13) and that of the corresponding C
subset (Figure 12). We use the ®_ notation to denote a finite vector of items, e.g., ®𝛼 . For a C* program
𝑝 (and similarly for a statement 𝑠 or an expression 𝑒), we write 𝑝 for its erased C counterpart
obtained by removing all capability-passing clauses (e.g., check, pathcond), type refinements (e.g.,
[𝑤] in i32[𝑤]), and proof blocks (i.e., {|proof|}; gets translated to a skip). We assume all variables are
declared at the beginning of a function and all capabilities are annotated with assertions. We assume
each logical variable and logic term inherently has a sort, and 𝑃,𝑄 are reserved for separation-logic
assertions of sort hprop; the sort of a term can be explicitly annotated for clarity, e.g., 𝑃 : hprop.

3.3.2 Typing Judgments. The typing judgment of C* statements has the form

Λin; Σin | 𝐾ret ⊢stmt 𝑠 : Λout; Σout

under an implicit context of user-defined and primitive function specifications. Logical variable
contexts Λ, capability contexts Σ, and continuation specifications 𝐾 are defined as follows:

Λ ::= · | Λ, 𝛼 Σ ::= · | Σ, 𝜅 𝐾 ::= exist(®𝛼) return(i32[𝑤]) ensure(®𝜅𝑟).
We treat typing contexts Λ and Σ as unordered and assume binders are distinct (by suitable 𝛼-
renaming). We denote context concatenation by juxtaposition, e.g., Λ1,Λ2.

In this typing judgment, 𝑠 , Λin, Σin, 𝐾ret are treated as inputs, whereas Λout and Σout are treated
as output. Λin and Σin track the logic variables in scope and capabilities available at the beginning
of the statement, whereas Λout and Σout are the updated contexts after the statement executes under
normal exit (e.g., without calling return). The return continuation specification 𝐾ret corresponds
to the output specification of the enclosing function. We also have typing judgments for l-value
expressions 𝑒𝑙 of the form Λin; Σin ⊢lexp 𝑒𝑙 : i32[addr], where the refinement term addr represents
an address to be accessed; and for r-value expressions 𝑒 of the form Λin; Σin ⊢rexp 𝑒 : i32[val], where
val represents a value the expression evaluates to.

3.3.3 Typing Rules. The typing rules of C* are formulated in a syntax-guided manner, making
them directly executable as a type-checking algorithm. For example, the rule for if statements is
shown in Figure 14. This rule type-checks a conditional by ensuring that both branches unify with a
common join specification. First, the rule type-checks the condition expression 𝑒 to obtain its value
𝑤 . It then type-checks both branches separately, each with an augmented capability context that
includes the appropriate path condition. After type-checking both branches, the rule verifies that
their output capability contexts Σout𝑡 and Σout𝑓 can be unified with the join specification ®𝜅 =

−−→
𝑙 : 𝑃 .

Specifically, the rule requires that there exist substitutions 𝜎𝑡 and 𝜎𝑓 mapping the existential
variables ®𝛼 (declared in exgiven(®𝛼)) to concrete terms, such that Σout𝑡 contains

−−−−−−→
𝑙 : 𝜎𝑡 (𝑃) (i.e., an

instantiation of the join capabilities) plus some additional capabilities Σ′
𝑡 that are discardable (e.g.,

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

A Proof-Integrated Low-Level Programming Language with Local, Operational, and Extensible Reasoning 13

SepComm

𝑃1 ★ 𝑃2 = 𝑃2 ★ 𝑃1

SepAssoc

(𝑃1 ★ 𝑃2) ★ 𝑃3 = 𝑃1 ★ (𝑃2 ★ 𝑃3)

SepExist

(∃𝛼. 𝑃1) ★ 𝑃2 = ∃𝛼. (𝑃1 ★ 𝑃2)

ExistForall
∀𝛼. (𝑃 ⊢ 𝑄)

(∃𝛼. 𝑃) ⊢ (∃𝛼. 𝑄)

Fig. 15. Separation-logic structural rules used in the proof construction (an excerpt).

J ®𝜅𝑟 K ⊢ ∃®𝛼.J ®𝜅𝑒K (established by running proof)
Σin = ®𝜅𝑟 , Σ𝑓 Λout = Λin, ®𝛼 Σout = ®𝜅𝑒 , Σ𝑓

Λin; Σin ⊢𝑠 consume(®𝜅𝑟) given(®𝛼) produce(®𝜅𝑒) {|proof|} : Λout; Σout

Fig. 16. Typing rule of reasoning blocks. The exact form of proof code is made abstract.

(
∃®𝛼.J ®𝜅𝑒K

)
★ JΣ𝑓 K ⊢ ∃®𝛼.J ®𝜅𝑒K★ JΣ𝑓 K

J ®𝜅𝑟 K ⊢ ∃®𝛼.J ®𝜅𝑒K{
J ®𝜅𝑟 K

}
skip

{
∃®𝛼.J ®𝜅𝑒K

} Conseq-Skip{
J ®𝜅𝑟 K★ JΣ𝑓 K

}
skip

{(
∃®𝛼.J ®𝜅𝑒K

)
★ JΣ𝑓 K

} Frame{
J ®𝜅𝑟 K★ JΣ𝑓 K

}
skip

{
∃®𝛼.

(
J ®𝜅𝑒K★ JΣ𝑓 K

)} Conseq

Fig. 17. The corresponding separation-logic derivation for a reasoning block.

pure facts); similarly for Σout𝑓 . If all checks pass, the rule concludes the if statement is well-typed,
with updated logical variables Λin, ®𝛼 (with newly introduced existentials) and join capabilities ®𝜅.6

3.3.4 Meta-Properties. The typing rules of C* are closely related to separation-logic proof rules of
the underlying C program. Our language design (with capability-passing and reasoning blocks) and
typing rules ensure that a well-typed C* statement (and expression, program, etc.) corresponds to a
valid separation-logic derivation of the underlying erased C statement (and expression, program,
etc.). Given Λ = {𝛼1, . . . , 𝛼𝑘 } and Σ = {𝑙1 : 𝑃1, . . . , 𝑙𝑚 : 𝑃𝑚}, we define the following notations:

∀Λ.𝑃 def
= ∀𝛼1, . . . , 𝛼𝑘 . 𝑃 ∃Λ.𝑃 def

= ∃𝛼1, . . . , 𝛼𝑘 . 𝑃 JΣK def
=

𝑚
★
𝑖=1
𝑃𝑖 .

We establish the following soundness result, stated for simplicity without concerning jump state-
ments (hence ignoring the 𝐾ret continuation specification in the typing judgment).

Theorem 3.1 (Soundness). For any well-typed C* statement 𝑠 , i.e., Λin; Σin ⊢stmt 𝑠 : Λout; Σout,

there exists a logical variable context Λ such that: (1) Λout = Λin,Λ, and (2) the erased C statement 𝑠

satisfies the following separation-logic triple in a canonical form [9]:

∀Λin.
{
JΣinK

}
𝑠
{
∃Λ.JΣoutK

}
.

Proof. The proof goes by straightforward induction on the typing derivation. It constructs a
separation-logic derivation template for each case, relying on structural rules of separation logic
(some are shown in Figure 15) to align the proof state to typing-context manipulations. □

As an example case, consider the typing rule for reasoning blocks, shown in Figure 16. It
corresponds to the separation-logic derivation template for its erased C counterpart skip, shown in
6In our implementation, the join assertions ®𝑃 need not be provided upfront (when there is no need for abstraction) as they
can be inferred from the output capability contexts of the two branches.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Anon.

/* constructor */
term conj = mk_binop(`**`, `P`, `Q`);

/* destructor */
term left = left_of_sep(conj); // P
term right = right_of_sep(conj); // Q

/* discriminator */
if (is_sep(conj)) { ... }

/* equality checker */
if (equals_term(left, right)) { ... }

/* assume th proves i < 2 |- i < 3 */
/* get the conclusion */
term concl = conclusion(th); // i < 3

/* get the n-th hypothesis */
term hyp = nth_hypth(th, 0); // i < 2

Term-Specific Utilities

Theorem-Specific Utilities

Reasoning Block Interface
/* get the goal of a declarative block */
term goal = get_goal();

/* give the proven entailment of this block */
by_using(axiom(`P |-- Q ** R`));

/* provide the produced capabilities */
returns(`Q`, `R`);

Inference Rules

Backward Proof Tactics
GN Init_goal(term goal); /* start backward proof */
void Proof_goal(GN g, thm th); /* prove goal A ?- t with thm A |- t */
thm Solve(GN g); /* finish backward proof if subgoals in g are solved */
GN CONJ_TAC(GN g); // [A ?- t1 /\ t2] => [A ?- t1; A ?- t2]
GN DISJ1_TAC(GN g); // [A ?- t1 \/ t2] => [A ?- t1]
GN MP_TAC(GN g, thm th);
 // [A ?- t] => [A ?- s] where th: A |- s => t
GN DISCH_TAC(GN g); // [A ?- u => v] => [A,u ?- v]
GN UNDISCH_TAC(GN g, int n);
 // [A,A_n ?- v] => [A ?- A_n => v]
GN CHOOSE_TAC(GN g, thm th);
 // [A ?- u] => [A,t ?- u] where th: A |- ∃x.t
GN EXISTS_TAC(GN g, term u);
 // [A ?- ∃x.t] => [A ?- t[u/x]]
GN GEN_TACS(GN g); // [A ?- ∀x1 … xn. t] => [A ?- t]
GN REWRITE_TAC(GN g, thm th);
 // [A ?- t] => [A ?- t[v/u]] where th: A |- u = v
GN ARITH_TAC(GN g); /* solve g by arith_rule */
GN FACTS_INTRO_TAC(GN g);
 // [A ?- P ** fact(t) |-- Q] => [A,t ?- P |-- Q]
GN AUTO_FRAME_TAC(GN g);
 // [A ?- h1 ** h2 |-- h1 ** h3] => [A ?- h2 |-- h3]

Note: `x` is syntax sugar for parse_term("x")

/* inductive type */
indtype int_list =
 define_type("int_list =
 nil | cons integer int_list");

/* recursive function */
thm nth =
 define(`nth(cons(h,t)),0) = h &&
 nth(cons(h,t)),SUC(n)) = nth(t,n)`);

Definitional Mechanisms

axiom(`0 = 1`) // |- 0 = 1
assume(`0 = 1`) // 0 = 1 |- 0 = 1
disch(assume(`x > 0`), `x > 0`) // |- x > 0 => x > 0
undisch(axiom(`p => q`)) // p |- q
mp(axiom(`p => q`), axiom(`p`)) // |- q
conjunct(axiom(`p`), axiom(`q`)) // |- p /\ q
conjunct1(axiom(`p /\ q`)) // |- p
disj_cases(axiom(`p \/ q`),
 undisch(axiom(`p => r`)),
 undisch(axiom(`q => r`))) // |- r
refl(`x`) // |- x = x
trans(axiom(`x = y`), axiom(`y = z`)) // |- x = z
symm(axiom(`x = y`)) // |- y = x
spec(`x`, axiom(`∀a. a = a`)) // |- x = x
arith_rule(`i < 2 => i < 3`) // |- i < 2 => i < 3
hentail_refl(`i32_at p 0`) // |- i32_at p 0 |-- i32_at p 0
eq2ent(axiom(`P = Q`)) // |- P |-- Q

Fig. 18. Representative C proof functions in C*.

Figure 17 (outermost ∀Λin quantifiers are implicit; associativity and commutativity of separating
conjunction are implicitly applied). The entailments at leaf nodes are discharged by the entailment
established by proof code and the structural rules shown in Figure 15.

4 Sound and C-Programmable Proof Interface

This section presents our proof interface in C. We describe our LCF-style interface in Section 4.1,
showing how users of C* can construct theorems as abstract values and extend proof support by C
programming. For ensuring soundness of proof programming in C, we introduce a variant of the
LCF architecture in Section 4.2.

4.1 Programmable Proof Interface in C

LCF-Style Theorem Proving. For programmable proof support, we follow the long-standing LCF
approach to theorem proving. Pioneered by Robin Milner and colleagues in the early work on the
Edinburgh LCF theorem prover [21, 22], this approach and its descendants are still widely used
today [25, 37, 45]. They use a general-purpose programming language as the meta-language to
manipulate logical entities, such as terms, types, and theorems. The axioms of the logic are then
represented as theorem constants, and the inference rules are implemented as interfaces that return
theorems. This approach is programmable in that arbitrary proof functions (e.g., derived rules or
search strategies) and proof styles (e.g., goal-directed) can be developed on top of this interface.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

A Proof-Integrated Low-Level Programming Language with Local, Operational, and Extensible Reasoning 15

term list_mk_hsep(term* tms) {

int len = tms_len(tms);

if (len <= 0) return `emp`;
term result = tms[len - 1];

for (int i = len - 2; i >= 0; i--)

result = mk_binop(`**`,tms[i],result);
return result; }

(a)

thm sll_cons_destr_proof() {

GN root = Init_goal(...);

GN g = GEN_TACS(root);

g = FACTS_INTRO_TAC(g);

thm lem = match_mp(sll_not_zero, Get_asmp(g, 0));

Proof_goal(g, spec(`l:int list`, lem));

return Solve(root); }

(b)

Fig. 19. Example term manipulation and proof code in C*.

In C*, we provide an LCF-style proof interface in the C programming language, offering a variety
of functions to manipulate HOL terms (of type term) and theorems (of type thm). Figure 18 showcases
representative proof functions in C*, some of which are primitive in HOL (e.g., assume and refl)
while others are extended in C (e.g., the backward proof tactics; see Section 5).

Term Utilities. The terms in C* are simply-typed lambda terms. Users can construct a term in
conventional mathematical notation by calling parse_term, which parses a string representation into
a term object (we use syntactic sugar `...` for this common operation). To facilitate programmatic
manipulation of terms, term constructor functions allow building complex terms from simpler
ones; for example, mk_binop constructs a binary application from an operator and two operands.
These constructor functions check that the resulting terms are well-formed; for example, mk_binop
verifies that the operator and operands have matching types. Terms can be inspected and dissected
using discriminator functions (e.g., is_sep) and destructor functions (e.g., left_of_sep), and can be
compared for (𝛼-)equality using equals_term.
As an example of extended term manipulation utilities, Figure 19(a) shows a function

list_mk_hsep that constructs the iterated separating conjunction of an array of terms in a right-
associative manner (returning `emp` if the array is empty).

Theorem Utilities and Inference Rules. A theorem is a sequent consisting of a list of hypotheses
and a conclusion (written as A1,...,An |- A in Figure 18), all of which must be propositions (i.e.,
terms of the bool sort). We provide destructors for theorems, which allow inspection of a theorem’s
conclusion and individual hypotheses as terms. Theorems are constructed using inference rules,
such as assume (which deduces a proposition from itself as a hypothesis), mp (modus ponens), and
disch (which discharges a hypothesis as an antecedent for the conclusion). For convenience, the
interface also includes higher-level proof automation functions, such as arith_rule, which decides
linear arithmetic propositions.

Definitional Mechanisms. Definitional mechanisms in the proof interface allow users to extend
the logic with new types and constants. New inductive data types can be defined using define_type,
which takes the clauses of the type definition as a string and returns an indtype (a struct containing
the induction and recursion theorems for the new inductive type). The define function allows users
to define new term constants by providing the defining equations of a total function.

Backward Proof Tactics. The native style of proof in the LCF approach is to invoke inference
rules (and forward proof functions derived from them) such that new theorems are derived from
existing ones, known as the forward proof style. It is sometimes more intuitive to work backwards
when the goal is known upfront, recursively decomposing it into (hopefully simpler) subgoals that
entail the validity of the original goal. This style of proof is known as the backward proof style.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Anon.

Proof Kernel User Proof
Protected Interface

Type-Safe Meta-Language

thm, term, …

(a) The traditional LCF architecture: protect proof interface by type abstraction.

Proof Kernel User ProofObject
Store Interface

Process #1 Process #2

Handles

(b) Our variant of the LCF architecture: protect proof interface by process isolation.

Fig. 20. Ensuring soundness of LCF-style proof programming.

We support this goal-directed proof style as a library extension, implementing tactics as functions
that transform goal trees, which contain goal nodes representing subgoals. To distinguish from a
proven theorem, we write a goal as a sequent A1,...,An ?- A in Figure 18, where the question
mark indicates that the goal is yet to be proven. Users can start a backward proof using Init_goal,
which initializes a goal tree with a single node representing the to-be-proven goal ?- A with no
hypotheses and the given term as the conclusion. Users can then apply tactics to the goal tree,
extending it with new goal nodes that represent the subgoals of the original goal. For example,
a conjunctive goal can be decomposed into two subgoals by CONJ_TAC. A subgoal can be solved
directly by Proof_goal if a matching theorem is available, or by automation tactics like ARITH_TAC.
Finally, after proving all subgoals, calling Solve on the root node of the goal tree automatically
combines the proven theorems of the subgoals into the theorem corresponding to the original goal.
Figure 19(b) shows an example backward proof for the destruction theorem of non-empty lists

sll_cons_destr (its statement is given in paragraph Operational Reasoning Steps in Section 2). It
uses general tactics such as GEN_TACS and separation-logic-specific tactics such as FACTS_INTRO_TAC
(we write P|--Q for a separation-logic entailment in Figure 18).

Reasoning Block Interface. Our C proof interface is designed to be used within reasoning blocks in
C* programs. When type-checking a reasoning block, the consumed capabilities are automatically
bound to term variables with the same names, providing the proof code with access to the input
capabilities as logical terms. The proof code can then manipulate these terms using the proof
functions described above to construct the desired entailment theorem. To interact with the type
checker, the interface provides several specialized functions: get_goal retrieves the current goal
to be proven (in a declarative reasoning block), and by_using submits the proven theorem back
to the type checker to certify the reasoning step. By default, the produced capabilities are bound
to the conjuncts of the consequent of the proven entailment theorem. We also provide a way to
explicitly specify the resulting capabilities using the returns function (e.g., when we want to put
two separating conjuncts into the same capability).

4.2 Ensuring Soundness

To ensure soundness, all proof code must ultimately reduce to calls to primitive inference rules
(implemented by a small proof kernel), a property known as full expansiveness [20]. The original
LCF architecture achieves this through type abstraction [21]: logical objects are implemented as
abstract data types in the meta-language, ensuring all theorem values are constructed only through
the proof interface (illustrated in Figure 20(a)).

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

A Proof-Integrated Low-Level Programming Language with Local, Operational, and Extensible Reasoning 17

Proof RunnerType Checker

Proof Kernel

OCaml Proof Interface
C Proof Interface

Proof Server

sll.h

revers
e.cst

RPC RPC

HOL Light

Proven Entailments

C* Source Files

Shared Proof Libraries
Proof CodeInput

Fig. 21. Implementation architecture of the C* prototype.

However, C’s weak type system does not provide such type abstraction as it allows arbitrary
mutation and type casting. This allows user code to directly manipulate memory representations
and forge invalid theorems. For example, if theorems are represented as a struct containing a
conclusion and an array of hypotheses:

typedef struct thm_node { term concl; term* hyps } *thm;

A malicious user could directly mutate a theorem’s conclusion, forging an invalid theorem:

thm taut = assume(`true`); // taut proves true |- true

taut->concl = `false`; // taut proves true |- false, unsound!

Similarly, if goals and theorems share the same memory representation, a user could inadvertently
pass an unproven goal where a proven theorem is expected, leading to unsound reasoning.

Our Solution. We address this challenge through a process-isolated architecture (illustrated in
Figure 20(b)) that enforces full expansiveness without relying on language-level type abstraction.
The key insight is to isolate user proof code from the proof kernel using separate processes:7

• The proof kernel runs in one process, maintaining the actual representations of logical
objects (theorems, terms) and implementing the primitive proof interfaces.

• User-provided proof code runs in another separate process and manipulates logical objects
only through handles (i.e., opaque identifiers) generated by the kernel.

• At the interprocess communication boundary, the kernel validates all operations by looking
up handles in its object store, ensuring only valid logical objects are referenced.

Operating system memory isolation prevents user code from directly accessing or forging logical
objects in the kernel’s process. Consequently, all logical objects manipulated by user code must be
constructed through the kernel’s proof functions, satisfying the property of full expansiveness.

5 Implementation and Evaluation

Implementation Notes. We implement a prototype language and verifier for C*, whose architecture
is illustrated in Figure 21. The system consists of three main components that interact during
verification after the frontend compiler parses the input source files:

• The type checker implements the typing rules of C* (described in Section 3.3) and checks
the input source files. When encountering a reasoning block, it delegates the C proof code
to the proof runner for execution and certifies the resulting entailment theorem.

• The proof runner executes the C proof code within reasoning blocks. It receives the C proof
code from the type checker, interacts with the proof kernel to resolve calls to the proof
interface, and produces an entailment theorem that is fed back to the type checker.

7As seen shortly in Section 5, user proof and proof kernel need not be written in the same programming language.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Anon.

Table 1. Benchmark statistics. The columns stand for: #Fun: number of functions; #Impl: lines of implemen-
tation code; #Proof: lines of proof code (not counting libraries); #OP: number of operational reasoning blocks;
#DC: number of declarative reasoning blocks; Locality%: the arithmetic mean of the ratios of the number of
capabilities passed in each reasoning block to the total number of capabilities available in typing context.

Class Name #Fun #Impl #Proof #OP #DC Locality%

LiveVerif

min 2 18 36 2 2 32.5
fibonacci 1 20 104 3 2 56.2
swap 1 10 0 0 0 -
sort3 1 36 25 6 3 20.0
sort3_separate_args 1 36 16 4 3 14.5
memset 1 10 48 6 9 17.7
linked_list 2 24 38 9 9 27.8
onesize_malloc 3 37 57 15 11 15.7
tree_set 4 97 100 34 17 18.8
nt_uint8_string 1 17 83 22 26 11.5
critbit 14 245 300 137 46 18.1

Extended
clear 1 15 31 4 2 52.3
abs 1 13 4 4 2 41.7
factorial 1 14 16 0 3 46.7

• The proof kernel provides core reasoning services in the LCF style, including term-
manipulation utilities and basic proof functions (described in Section 4.1).

We reuse HOL Light [25], a theorem prover for higher-order logic implemented in OCaml, as our
proof kernel. The type checker is implemented in OCaml, while the proof runner executes in C;
both components communicate with the kernel through remote procedure calls (RPCs).

Evaluation. We evaluate C*’s effectiveness in supporting local, operational, and extensible rea-
soning using the benchmark from the Live Verification framework [23].8 Our benchmark covers
an interesting set of C programs, including: simple algorithms (e.g., fibonacci, sort3, factorial
), low-level memory manipulations (e.g., memset, nt_uint8_string, onesize_malloc), and linked
data structures (e.g., linked_list, tree_set, critbit). We verify the functional correctness of all
benchmark programs entirely within C*, with verification results shown in Table 1.

Locality of Reasoning. The Locality% metric in Table 1 is calculated by taking the average of
the ratios of the number of capabilities consumed by each reasoning block to the total number
of capabilities available at that point in the typing context. Lower values of Locality% indicate
better locality of the reasoning steps performed. The results demonstrate that C* allows users to
effectively perform local reasoning steps, where the reasoning dependencies on the relevant pieces
of information in the global proof state are made explicit as capability inputs.

Prevalence of Operational Reasoning. Table 1 shows the numbers of operational (#OP) and
declarative (#DC) reasoning blocks for each program, which confirms that operational reasoning
is frequently employed in verification. It is worth noting that these two styles have equivalent
expressiveness in theory (i.e., any declarative block can be converted to an operational one as long
as they prove the same entailment); nevertheless, all operational blocks in our verified programs
8We made some modifications to the benchmark programs (details are provided in the supplementary material): (1) We
modify tree_set and critbit to a recursive style; (2) We omit several functions in critbit; (3) We remove the two
variants of swap; (4) We use signed integers instead of unsigned; arithmetic overflow checks are ignored.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

A Proof-Integrated Low-Level Programming Language with Local, Operational, and Extensible Reasoning 19

Table 2. Implemented proof libraries in C*. The columns stand for: Lib Type: type of the library (shared or
domain-specific); Lib Name: name of the library; #Func: number of functions in the library; File Size (KB):
size of the library file in kilobytes; Description: brief description of the library’s purpose.

Lib Type Lib Name #Func File Size (KB) Description

Shared

proof_user 91 21.8 Term and theorem utilities and rewriting
proof_conv 61 31.4 Separation logic reasoning
proof_tactic 77 61.8 Backward reasoning support

cstar_opfun_lib 28 9.78 Basic operational proof functions
cstar_dcfun_lib 4 1.83 Basic declarative proof functions
cstar_pure_solver 16 8.18 Automated solvers for pure facts

Domain-Specific
sll_lib 4 0.63 Singly linked lists

array_at_lib 14 4.40 Arrays
bst_lib 10 5.86 Binary search trees

call the operational proof functions described later, meaning the operational style is naturally
applicable in these reasoning steps as opposed to giving assertions upfront.

C-Programmable Proof Support. We implemented C proof libraries atop the C* proof interface
and used them in reasoning blocks during the benchmark verification process. Table 2 summarizes
the proof libraries we implemented, including their sizes and descriptions. We group these libraries
into two categories: shared and domain-specific. The shared libraries provide general-purpose proof
abstractions (C functions/macros) for common reasoning patterns, covering: term and theorem
utilities; rewriting strategies (e.g., rewrite_list, once_rewrite); separation logic proof rules (e.g.,
hent_refl); backward reasoning tactics (e.g., CONJ_TAC); basic operational and declarative proof
functions (e.g., OP_REWRITE, DC_REWRITE); and automated pure fact solving (e.g., int_arith_solver).
The domain-specific libraries contain specialized predicates, lemmas, and proof functions tailored
to particular domains and data structures.

6 Related Work

There are many verifiers, proof frameworks, and infrastructures targeting verification of heap-
manipulating imperative programs [5, 6, 8, 9, 11–14, 18, 19, 23, 28, 31, 34, 39–41, 44, 49, 51, 52]. We
compare C* with recent separation-logic-based verifiers for C [28, 41, 44] and Live Verification [23].

Live Verification [23]. Live Verification [23] is a separation-logic proof framework embedded
in the Rocq prover. Leveraging Rocq’s support for existential meta-variables and custom tactic
notations, it realizes a form of real-time verification: users can inspect the current proof state in
the goal panel, use suitable customized tactics to synthesize the next line of implementation code
along with its correctness proof derived.
C* adopts a similar C subset and reuses the Live Verification benchmark. C* does not support

partial programs. C* takes a programming-integrated approach: it reifies the local proof state as
capabilities and reasoning dependencies as explicit capability passing, visible in source programs
without running proofs interactively. Additionally, whereas Live Verification uses Ltac/Ltac2 for
composing proof scripts and automation procedures, C* offers a sound programmable proof interface
in C for proof programming.

CN [41]. CN is a separation-logic-based verifier for C with an SMT backend, targeting predictable
automation for conventional systems software. It elaborates a large fragment of ISO C into a first-
order functional language (Core) using the Cerberus semantics [35]. It defines a type system for Core,

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Anon.

which combines liquid-style refinement types [43] with linear resources to represent separation-
logic assertions. By restricting the use of logical quantifiers in specifications, CN ensures decidable,
quantifier-free VCs. It adds specialized automation for iterated separating conjunction [36]. When
automation falls short, users can state lemmas and delegate proofs to an external prover.
CN’s linear resources are akin to capabilities in C*: both represent separation-logic assertions.

However, resources are mostly inferred and hidden in CN, whereas capabilities are passed explicitly
in C*. To support non-backtracking inference, CN imposes syntactic restrictions on resource
predicates (reflecting an input/output-mode distinction); C* allows capabilities to carry arbitrary
assertions. CN provides a significantly higher level of verification automation and C feature coverage
than C*; on the other hand, C* provides more expressive higher-order logic for specification and
full control of the proof state, e.g., explicit local reasoning steps can be performed by user proof
code, which is not supported in CN.

VeriFast [28]. VeriFast is a state-of-the-art automated separation-logic verifier for C, Java, and
(recently) Rust. Like CN, it covers a broad range of C features and achieves predictable automation
via an SMT-backed first-order fragment. It uses a compositional symbolic execution approach [50],
maintaining the symbolic heap and path conditions for each control flow branch, and generating
VCs when an assertion is met along the way. When desired, users can manually unfold and fold
predicates using the proof commands open and close, and invoke lemma functions.

The primary distinction between C* and VeriFast lies in the extensibility of their proof support.
In VeriFast, proof support is limited to a fixed set of built-in ghost statements and built-in induction
by writing recursive lemma functions. C* enables users to develop reusable, higher-level proof
procedures in C by programming upon its sound proof interface.

RefinedC [44]. RefinedC is a ownership-refinement type system for C programs, focusing on
automated functional-correctness verification with foundational correctness guarantees. It adopts
the semantic typing technique [48], interpreting its types and typing rules in Iris [29].
Compared with RefinedC, which binds ownership and invariants to program variables, C*

treats these information as separate capabilities, which provides more flexibility of user-guided
manual proof steps. On the other hand, the RefinedC approach supports syntax-guided proof
automation by customizing typing rules for programming constructs in its separation-logic DSL.
It is interesting to investigate whether the RefinedC style of ownership-refinement types and
syntax-guided automation can be encoded in C*. We leave this as future work.

7 Conclusion

We have presented C*, a language and verifier design that integrates programming and proving in
C. It requires users to pass static information as ghost variables called capabilities; together with
the structure that separation logic provides, this explicitness enables in-place reasoning steps with
clear local reasoning dependencies. Through our sound LCF-style proof interface in C, users can
program proof code and proof libraries in the same language used for writing implementation code,
enabling better integration of verification and development workflows.

Looking forward, several directions remain for future work, including (i) extending C*’s coverage
of C features, (ii) improving proof automation for “trivial-but-frequent” steps, such as overflow
checks, to reduce the need for explicit reasoning blocks for routine tasks, and (iii) exploring how we
can support encoding rich typing features—such as polymorphism and Rust-style borrowing—as
capability passing, potentially bringing additional safety guarantees to C programming at low cost.

Our ultimate goal is to make formal proving more accessible and practical for programmers. We
envision that operational reasoning with capabilities should feel as natural as C programming at
the static level. Achieving this vision requires larger case studies and more mature proof libraries.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

A Proof-Integrated Low-Level Programming Language with Local, Operational, and Extensible Reasoning 21

References

[1] Amal Ahmed, Matthew Fluet, and Greg Morrisett. 2007. L3: A Linear Language with Locations. Fundam. Informaticae

77, 4 (2007), 397–449. http://content.iospress.com/articles/fundamenta-informaticae/fi77-4-06
[2] Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter Chubb, Liam O’Connor, Joel Beeren, Yutaka

Nagashima, Japheth Lim, Thomas Sewell, Joseph Tuong, Gabriele Keller, Toby C. Murray, Gerwin Klein, and Gernot
Heiser. 2016. CoGENT: Verifying High-Assurance File System Implementations. In Proceedings of the Twenty-First

International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2016,

Atlanta, GA, USA, April 2-6, 2016, Tom Conte and Yuanyuan Zhou (Eds.). ACM, 175–188. doi:10.1145/2872362.2872404
[3] Peter B. Andrews. 1986. An introduction to mathematical logic and type theory - to truth through proof. Academic Press.
[4] Andrew W. Appel. 2015. Verification of a Cryptographic Primitive: SHA-256. ACM Trans. Program. Lang. Syst. 37, 2

(2015), 7:1–7:31. doi:10.1145/2701415
[5] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino. 2005. Boogie: A Modular

Reusable Verifier for Object-Oriented Programs. In Formal Methods for Components and Objects, 4th International

Symposium, FMCO 2005, Amsterdam, The Netherlands, November 1-4, 2005, Revised Lectures (Lecture Notes in Computer

Science, Vol. 4111), Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever (Eds.). Springer,
364–387. doi:10.1007/11804192_17

[6] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2005. Smallfoot: Modular Automatic Assertion Checking with
Separation Logic. In Formal Methods for Components and Objects, 4th International Symposium, FMCO 2005, Amsterdam,

The Netherlands, November 1-4, 2005, Revised Lectures (Lecture Notes in Computer Science, Vol. 4111), Frank S. de Boer,
Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever (Eds.). Springer, 115–137. doi:10.1007/11804192_6

[7] Yves Bertot and Pierre Castéran. 2004. Interactive Theorem Proving and Program Development - Coq’Art: The Calculus of

Inductive Constructions. Springer. doi:10.1007/978-3-662-07964-5
[8] Allan Blanchard, Frédéric Loulergue, and Nikolai Kosmatov. 2019. Towards Full Proof Automation in Frama-C Using

Auto-active Verification. In NASA Formal Methods - 11th International Symposium, NFM 2019, Houston, TX, USA, May

7-9, 2019, Proceedings (Lecture Notes in Computer Science, Vol. 11460), Julia M. Badger and Kristin Yvonne Rozier (Eds.).
Springer, 88–105. doi:10.1007/978-3-030-20652-9_6

[9] Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and AndrewW. Appel. 2018. VST-Floyd: A Separation
Logic Tool to Verify Correctness of C Programs. J. Autom. Reason. 61, 1-4 (2018), 367–422. doi:10.1007/S10817-018-
9457-5

[10] Arthur Charguéraud and François Pottier. 2008. Functional translation of a calculus of capabilities. In Proceeding of the

13th ACM SIGPLAN international conference on Functional programming, ICFP 2008, Victoria, BC, Canada, September

20-28, 2008, James Hook and Peter Thiemann (Eds.). ACM, 213–224. doi:10.1145/1411204.1411235
[11] Wei-Ngan Chin, Cristina David, and Cristian Gherghina. 2011. A HIP and SLEEK verification system. In Companion to

the 26th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,

OOPSLA 2011, part of SPLASH 2011, Portland, OR, USA, October 22 - 27, 2011, Cristina Videira Lopes and Kathleen Fisher
(Eds.). ACM, 9–10. doi:10.1145/2048147.2048152

[12] Adam Chlipala. 2011. Mostly-automated verification of low-level programs in computational separation logic. In
Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2011,

San Jose, CA, USA, June 4-8, 2011, Mary W. Hall and David A. Padua (Eds.). ACM, 234–245. doi:10.1145/1993498.1993526
[13] Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach, Michal Moskal, Thomas Santen, Wolfram

Schulte, and Stephan Tobies. 2009. VCC: A Practical System for Verifying Concurrent C. In Theorem Proving in Higher

Order Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings (Lecture

Notes in Computer Science, Vol. 5674), Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel (Eds.).
Springer, 23–42. doi:10.1007/978-3-642-03359-9_2

[14] Sa Cui, Kevin Donnelly, and Hongwei Xi. 2005. ATS: A Language That Combines Programming with Theorem
Proving. In Frontiers of Combining Systems, 5th International Workshop, FroCoS 2005, Vienna, Austria, September

19-21, 2005, Proceedings (Lecture Notes in Computer Science, Vol. 3717), Bernhard Gramlich (Ed.). Springer, 310–320.
doi:10.1007/11559306_19

[15] David Delahaye. 2000. A Tactic Language for the System Coq. In Logic for Programming and Automated Reasoning,

7th International Conference, LPAR 2000, Reunion Island, France, November 11-12, 2000, Proceedings (Lecture Notes in

Computer Science, Vol. 1955), Michel Parigot and Andrei Voronkov (Eds.). Springer, 85–95. doi:10.1007/3-540-44404-1_7
[16] Gabriel Ebner, Guido Martínez, Aseem Rastogi, Thibault Dardinier, Megan Frisella, Tahina Ramananandro, and Nikhil

Swamy. 2025. PulseCore: An Impredicative Concurrent Separation Logic for Dependently Typed Programs. Proc. ACM
Program. Lang. 9, PLDI (2025), 1516–1539. doi:10.1145/3729311

[17] Marco Eilers, Malte Schwerhoff, and Peter Müller. 2024. Verification Algorithms for Automated Separation Logic
Verifiers. In Computer Aided Verification - 36th International Conference, CAV 2024, Montreal, QC, Canada, July 24-27,

2024, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 14681), Arie Gurfinkel and Vijay Ganesh (Eds.). Springer,

http://content.iospress.com/articles/fundamenta-informaticae/fi77-4-06
https://doi.org/10.1145/2872362.2872404
https://doi.org/10.1145/2701415
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/11804192_6
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-030-20652-9_6
https://doi.org/10.1007/S10817-018-9457-5
https://doi.org/10.1007/S10817-018-9457-5
https://doi.org/10.1145/1411204.1411235
https://doi.org/10.1145/2048147.2048152
https://doi.org/10.1145/1993498.1993526
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/11559306_19
https://doi.org/10.1007/3-540-44404-1_7
https://doi.org/10.1145/3729311

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Anon.

362–386. doi:10.1007/978-3-031-65627-9_18
[18] Marco Eilers, Malte Schwerhoff, Alexander J. Summers, and Peter Müller. 2025. Fifteen Years of Viper. In Computer

Aided Verification - 37th International Conference, CAV 2025, Zagreb, Croatia, July 23-25, 2025, Proceedings, Part I

(Lecture Notes in Computer Science, Vol. 15931), Ruzica Piskac and Zvonimir Rakamaric (Eds.). Springer, 107–123.
doi:10.1007/978-3-031-98668-0_5

[19] Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3 - Where Programs Meet Provers. In Programming

Languages and Systems - 22nd European Symposium on Programming, ESOP 2013, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings (Lecture Notes

in Computer Science, Vol. 7792), Matthias Felleisen and Philippa Gardner (Eds.). Springer, 125–128. doi:10.1007/978-3-
642-37036-6_8

[20] Mike Gordon. 2000. From LCF to HOL: a short history. In Proof, Language, and Interaction, Essays in Honour of Robin

Milner, Gordon D. Plotkin, Colin Stirling, and Mads Tofte (Eds.). The MIT Press, 169–186.
[21] Michael J. C. Gordon, Robin Milner, F. Lockwood Morris, Malcolm C. Newey, and Christopher P. Wadsworth. 1978. A

Metalanguage for Interactive Proof in LCF. In Conference Record of the Fifth Annual ACM Symposium on Principles

of Programming Languages, Tucson, Arizona, USA, January 1978, Alfred V. Aho, Stephen N. Zilles, and Thomas G.
Szymanski (Eds.). ACM Press, 119–130. doi:10.1145/512760.512773

[22] Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth. 1979. Edinburgh LCF. Lecture Notes in Computer
Science, Vol. 78. Springer. doi:10.1007/3-540-09724-4

[23] Samuel Gruetter, Viktor Fukala, and Adam Chlipala. 2024. Live Verification in an Interactive Proof Assistant. Proc.
ACM Program. Lang. 8, PLDI (2024), 1535–1558. doi:10.1145/3656439

[24] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, Vilhelm Sjöberg, and David Costanzo.
2016. CertiKOS: An Extensible Architecture for Building Certified Concurrent OS Kernels. In 12th USENIX Symposium

on Operating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016, Kimberly Keeton
and Timothy Roscoe (Eds.). USENIX Association, 653–669. https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/gu

[25] John Harrison. 2009. HOL Light: An Overview. In Theorem Proving in Higher Order Logics, 22nd International Conference,

TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings (Lecture Notes in Computer Science, Vol. 5674), Stefan
Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel (Eds.). Springer, 60–66. doi:10.1007/978-3-642-
03359-9_4

[26] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan Parno, Danfeng Zhang, and Brian Zill. 2014.
Ironclad Apps: End-to-End Security via Automated Full-System Verification. In 11th USENIX Symposium on Operating

Systems Design and Implementation, OSDI ’14, Broomfield, CO, USA, October 6-8, 2014, Jason Flinn and Hank Levy (Eds.).
USENIX Association, 165–181. https://www.usenix.org/conference/osdi14/technical-sessions/presentation/hawblitzel

[27] C. A. R. Hoare. 1971. Proof of a Program: FIND. Commun. ACM 14, 1 (1971), 39–45. doi:10.1145/362452.362489
[28] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank Piessens. 2011. Ver-

iFast: A Powerful, Sound, Predictable, Fast Verifier for C and Java. In NASA Formal Methods - Third Interna-

tional Symposium, NFM 2011, Pasadena, CA, USA, April 18-20, 2011. Proceedings (Lecture Notes in Computer Science,

Vol. 6617), Mihaela Gheorghiu Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi (Eds.). Springer, 41–55.
doi:10.1007/978-3-642-20398-5_4

[29] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from
the ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.
doi:10.1017/S0956796818000151

[30] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David A. Cock, Philip Derrin, Dhammika Elkaduwe,
Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2009. seL4:
formal verification of an OS kernel.. In Proceedings of the 22nd ACM Symposium on Operating Systems Principles 2009,

SOSP 2009, Big Sky, Montana, USA, October 11-14, 2009, Jeanna Neefe Matthews and Thomas E. Anderson (Eds.). ACM,
207–220. doi:10.1145/1629575.1629596

[31] Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha Subasinghe, Yi Zhou, Jon Howell, Bryan Parno,
and Chris Hawblitzel. 2023. Verus: Verifying Rust Programs using Linear Ghost Types. Proc. ACM Program. Lang. 7,
OOPSLA1 (2023), 286–315. doi:10.1145/3586037

[32] Dirk Leinenbach and Thomas Santen. 2009. Verifying the Microsoft Hyper-V Hypervisor with VCC. In FM 2009: Formal

Methods, SecondWorld Congress, Eindhoven, The Netherlands, November 2-6, 2009. Proceedings (Lecture Notes in Computer

Science, Vol. 5850), Ana Cavalcanti and Dennis Dams (Eds.). Springer, 806–809. doi:10.1007/978-3-642-05089-3_51
[33] Gregory Malecha, Gordon Stewart, Frantisek Farka, Jasper Haag, and Yoichi Hirai. 2022. Developing With Formal

Methods at BedRock Systems, Inc. IEEE Secur. Priv. 20, 3 (2022), 33–42. doi:10.1109/MSEC.2022.3158196
[34] William Mansky and Ke Du. 2024. An Iris Instance for Verifying CompCert C Programs. Proc. ACM Program. Lang. 8,

POPL (2024), 148–174. doi:10.1145/3632848

https://doi.org/10.1007/978-3-031-65627-9_18
https://doi.org/10.1007/978-3-031-98668-0_5
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1145/512760.512773
https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.1145/3656439
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://doi.org/10.1007/978-3-642-03359-9_4
https://doi.org/10.1007/978-3-642-03359-9_4
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/hawblitzel
https://doi.org/10.1145/362452.362489
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/3586037
https://doi.org/10.1007/978-3-642-05089-3_51
https://doi.org/10.1109/MSEC.2022.3158196
https://doi.org/10.1145/3632848

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

A Proof-Integrated Low-Level Programming Language with Local, Operational, and Extensible Reasoning 23

[35] Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nienhuis, David Chisnall, Robert N. M. Watson, and
Peter Sewell. 2016. Into the depths of C: elaborating the de facto standards. In Proceedings of the 37th ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016,
Chandra Krintz and Emery D. Berger (Eds.). ACM, 1–15. doi:10.1145/2908080.2908081

[36] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. 2016. Automatic Verification of Iterated Separating
Conjunctions Using Symbolic Execution. In Computer Aided Verification - 28th International Conference, CAV 2016,

Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 9779), Swarat Chaudhuri
and Azadeh Farzan (Eds.). Springer, 405–425. doi:10.1007/978-3-319-41528-4_22

[37] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Isabelle/HOL - A Proof Assistant for Higher-Order

Logic. Lecture Notes in Computer Science, Vol. 2283. Springer. doi:10.1007/3-540-45949-9
[38] Lawrence C. Paulson. 1987. Logic and computation - interactive proof with Cambridge LCF. Cambridge tracts in

theoretical computer science, Vol. 2. Cambridge University Press.
[39] Ruzica Piskac, Thomas Wies, and Damien Zufferey. 2014. GRASShopper - Complete Heap Verification with Mixed

Specifications. In Tools and Algorithms for the Construction and Analysis of Systems - 20th International Conference,

TACAS 2014, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble,

France, April 5-13, 2014. Proceedings (Lecture Notes in Computer Science, Vol. 8413), Erika Ábrahám and Klaus Havelund
(Eds.). Springer, 124–139. doi:10.1007/978-3-642-54862-8_9

[40] Jonathan Protzenko, Jean Karim Zinzindohoué, Aseem Rastogi, Tahina Ramananandro, Peng Wang, Santiago Zanella-
Béguelin, Antoine Delignat-Lavaud, Catalin Hritcu, Karthikeyan Bhargavan, Cédric Fournet, and Nikhil Swamy. 2017.
Verified low-level programming embedded in F*. Proc. ACM Program. Lang. 1, ICFP (2017), 17:1–17:29. doi:10.1145/
3110261

[41] Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan Memarian, Peter Sewell, and Neel Krishnaswami.
2023. CN: Verifying Systems C Code with Separation-Logic Refinement Types. Proc. ACM Program. Lang. 7, POPL
(2023), 1–32. doi:10.1145/3571194

[42] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In 17th IEEE Symposium on

Logic in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings. IEEE Computer Society,
55–74. doi:10.1109/LICS.2002.1029817

[43] Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. 2008. Liquid types. In Proceedings of the ACM SIGPLAN

2008 Conference on Programming Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008, Rajiv Gupta
and Saman P. Amarasinghe (Eds.). ACM, 159–169. doi:10.1145/1375581.1375602

[44] Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer, and Deepak Garg. 2021.
RefinedC: automating the foundational verification of C code with refined ownership types. In PLDI ’21: 42nd ACM

SIGPLAN International Conference on Programming Language Design and Implementation, Virtual Event, Canada, June

20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.). ACM, 158–174. doi:10.1145/3453483.3454036
[45] Konrad Slind and Michael Norrish. 2008. A Brief Overview of HOL4. In Theorem Proving in Higher Order Logics,

21st International Conference, TPHOLs 2008, Montreal, Canada, August 18-21, 2008. Proceedings (Lecture Notes in

Computer Science, Vol. 5170), Otmane Aït Mohamed, César A. Muñoz, and Sofiène Tahar (Eds.). Springer, 28–32.
doi:10.1007/978-3-540-71067-7_6

[46] Jan Smans, Bart Jacobs, and Frank Piessens. 2012. Implicit dynamic frames. ACM Trans. Program. Lang. Syst. 34, 1
(2012), 2:1–2:58. doi:10.1145/2160910.2160911

[47] Frederick Smith, David Walker, and J. Gregory Morrisett. 2000. Alias Types. In Programming Languages and Systems,

9th European Symposium on Programming, ESOP 2000, Held as Part of the European Joint Conferences on the Theory and

Practice of Software, ETAPS 2000, Berlin, Germany, March 25 - April 2, 2000, Proceedings (Lecture Notes in Computer

Science, Vol. 1782), Gert Smolka (Ed.). Springer, 366–381. doi:10.1007/3-540-46425-5_24
[48] Amin Timany, Robbert Krebbers, Derek Dreyer, and Lars Birkedal. 2024. A Logical Approach to Type Soundness. J.

ACM 71, 6 (2024), 40:1–40:75. doi:10.1145/3676954
[49] Harvey Tuch, Gerwin Klein, and Michael Norrish. 2007. Types, bytes, and separation logic. In Proceedings of the 34th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2007, Nice, France, January 17-19,

2007, Martin Hofmann and Matthias Felleisen (Eds.). ACM, 97–108. doi:10.1145/1190216.1190234
[50] Frédéric Vogels, Bart Jacobs, and Frank Piessens. 2015. Featherweight VeriFast. Log. Methods Comput. Sci. 11, 3 (2015).

doi:10.2168/LMCS-11(3:19)2015
[51] Karen Zee, Viktor Kuncak, and Martin C. Rinard. 2009. An integrated proof language for imperative programs. In

Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2009,

Dublin, Ireland, June 15-21, 2009, Michael Hind and Amer Diwan (Eds.). ACM, 338–351. doi:10.1145/1542476.1542514
[52] Litao Zhou, Jianxing Qin, Qinshi Wang, Andrew W. Appel, and Qinxiang Cao. 2024. VST-A: A Foundationally Sound

Annotation Verifier. Proc. ACM Program. Lang. 8, POPL (2024), 2069–2098. doi:10.1145/3632911

https://doi.org/10.1145/2908080.2908081
https://doi.org/10.1007/978-3-319-41528-4_22
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-642-54862-8_9
https://doi.org/10.1145/3110261
https://doi.org/10.1145/3110261
https://doi.org/10.1145/3571194
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1145/2160910.2160911
https://doi.org/10.1007/3-540-46425-5_24
https://doi.org/10.1145/3676954
https://doi.org/10.1145/1190216.1190234
https://doi.org/10.2168/LMCS-11(3:19)2015
https://doi.org/10.1145/1542476.1542514
https://doi.org/10.1145/3632911

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Anon.

[53] Jean Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and Benjamin Beurdouche. 2017. HACL*:
A Verified Modern Cryptographic Library. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, Bhavani Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM, 1789–1806. doi:10.1145/3133956.3134043

https://doi.org/10.1145/3133956.3134043

	Abstract
	1 Introduction
	2 Overview of C*: A Guided Tour
	3 C* Language Design
	3.1 General Concepts
	3.2 Language Constructs
	3.3 Formalization

	4 Sound and C-Programmable Proof Interface
	4.1 Programmable Proof Interface in C
	4.2 Ensuring Soundness

	5 Implementation and Evaluation
	6 Related Work
	7 Conclusion
	References

