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1 Introduction
Programs use a variety of resources—such as heap memory,

files, network sockets, and locks. These resources are stateful
objects that must be used in a valid manner. For example,

a file handle must be opened before reading from or writ-

ing to it and a memory block may be freed at most once.

These requirements are safety properties, which require that

resource operations are applied to resources in some appro-

priate states. The task of verifying safety of resource usage

is called the resource usage analysis problem [9] and has been

studied actively for decades [1, 4, 7–9, 12, 14].

However, safety is not the only aspect of correct use of re-

sources: the other aspect is liveness, which requires resources
to eventually reach some desired states. For example, con-

sider the program below, which is an interactive file logger:

1 let rec main_loop log_lock =

2 let path = input () in

3 if path = "EXIT" then () else (

4 let input_file = open path in

5 let content = read input_file in

6 close input_file;

7 acquire log_lock;

8 ... (* write content to a log *)

9 release log_lock;

10 main_loop log_lock)

11 let main () =

12 let log_lock = new_lock () in

main_loop log_lock

The program may run indefinitely (it terminates only when

the user types "EXIT"). For such a potentially diverging pro-

gram to be correct, it is desirable to ensure liveness properties

of resources it creates—the opened files should eventually

be closed to avoid resource leaks, and a lock that has been

acquired should eventually be released so that other threads

can enter the critical sections.

In this short paper, we focus on the problem of verifying

temporal properties of resource usage. We call this problem

temporal resource usage analysis, extending resource usage
analysis [9, 10] with consideration of liveness properties.

2 Language 𝜆res
Variables x, f Locations ℓ Events a Integers n

Values v ::= x | n | () | res ℓ | rec f x . e
Expressions e ::= v | v1 v2 | newΨ | acca (v) | drop(v)

| let x = e1 in e2 | if0 v then e1 else e2
Our language 𝜆res is a call-by-value 𝜆-calculus extended with

resource operations. Resources res ℓ are created by newΨ,

where Ψ is some syntax (made abstract for now) for a user-

assigned temporal specification. It prescribes a set of valid
full usage traces of the allocated resource, which we call the

usage specification and denote by JΨK. For example, using a

mixed form of regular and 𝜔-regular expressions, temporal

specifications of files and locks may be specified as:

Ψfile
def

= open · (read | write)∗ · close
Ψlock

def

= (acquire · release)∗ | (acquire · release)𝜔 .

A resource access acca (v) takes a resource v and an event

a, which is a symbolic name of a certain resource operation,

such as open and close for files. A deallocation construct

drop(v) discards all resources accessible from the value v.
Semantically, each resource accumulates accessed events

as a history trace in the resource heap. When allocated, a

resource is associated with the empty trace; and every time

an access acca (res ℓ) is performed, the event a is appended
to the trace of res ℓ and this updated trace is checked to be a

prefix of some trace in the usage specification; and when a

resource is explicitly discarded by drop(v), the history trace

must conform to the usage specification of the resource.

Crucially, whereas safety of resource usage can be checked

by inspecting the prefixes of the full trace, liveness requires

checking that the full trace exactly matches some trace in

the usage specification to ensure desired events are eventu-

ally accessed [2]. For this reason, temporal resource usage

analysis requires that resources staying in the resource heap

infinitely (we call these infinite-lifetime resources) during a
divergent execution must have an evolution of history traces

whose limit trace conforms to the usage specification. For

example, consider the following program:

e1 def

=
let f = (rec f x . accread (x); f x) in
let x = newΨfile

in accopen (x); f x .

This program first creates and opens a file and then passes it

to the recursive function f , which continues to read the file
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infinitely. The history traces of the file resource evolve as

𝜖, open, open · read, open · read2, open · read3, · · ·
and have a limit infinite trace open·read𝜔 ∉ JΨfileK as it vio-
lates the requirement that close must eventually be applied.

This liveness violation cannot be detected by inspecting the

prefixes without reasoning about the full trace.

3 Overview
We identify the key challenges in type-based temporal re-

source usage analysis and present our ideas to address them.

3.1 Alias Tracking
Common to prior work on resource usage analysis [4, 10, 12]

is that (1) the types of resources are enriched with usage in-

formation that encodes the current state of the resource, and

(2) substructural typing techniques, e.g., linear, uniqueness,

or ordered typing, are applied to support strong update of

statically tracked resource states.

For the former, we similarly introduce resource types of

the form ResΨ that reuse the syntax of temporal specifica-

tions to encode the allowed future usage of the resource. We

call these Ψ usage prophecies. For example, after an open
event, the usage prophecy for a file resource can be updated

from Ψfile to Ψopened
def

= (read | write)∗ · close.
For the latter, among various established approaches, we

adopt uniqueness typing [3, 6, 13] due to its simplicity and

generality. Our use of uniqueness typing guarantees each

resource has a unique reference, facilitating sound strong

update of usage prophecies.

3.2 Progressivity Guarantee
Uniqueness typing alone is insufficient for verifying liveness

of infinite-lifetime resources when programs diverge. Recall

the program e1 given in Section 2. It does not satisfy the

temporal specification for files because the created file is

never closed. The crux of the problem is that the resource’s

state does not progress even though the infinite execution of

the program does. To see this in more detail, consider the

finite automaton representation of the file specification:

𝑠file
1

start 𝑠file
2

𝑠file
3

open

read, write

close

In the program e1, the state of the created file at the point

immediately before the recursive call is 𝑠file
2

, and it is then

stuck in this non-accepting state: the resource enters 𝑠file
2

again and again with a self-loop.

Our rationale for identifying unprogressiveness as prob-
lematic is that it hinders ensuring that the resources reach

certain desired states, namely, the accepting states in the

automaton representations of their specifications (e.g., 𝑠file
3

above for files). At its core, liveness requires that a resource

eventually reach a desired state: either the resource should

be left unaccessed forever in a desired state, or, over the

course of the execution, it should visit the desired states

infinitely such that the limit of the history traces at these

states matches some trace in the usage specification. Thus,

the lack of the progressivity guarantee makes it difficult to
ensure liveness requirements are met.

Conversely, by ensuring that the states of resources progress
along with the execution, we can guarantee that they reach the
desired states. For example, consider the following program:

e2 def

=

let f = (rec f (x, y). ebody) in
let z1 = newΨfile

in let z2 = newΨfile
in

accopen (z2); f (z1, z2)

ebody def

=
accopen (x); accclose (y);
let z = newΨfile

in f (z, x) .

This program first creates two file resources z1 and z2 and
then calls the recursive function f with them. The states

of the resources passed to f progress towards 𝑠file
3

along

with the execution—specifically, every time the function f
is recursively called. For the first argument resource x, its
state at the time of the call is supposed to be 𝑠file

1
. Since it

is accessed via open, its state is changed to 𝑠file
2

. Finally, it

is passed to the recursive call as the second argument. For

the second argument y, its state at the time of the call is

supposed to be 𝑠file
2

. Since it is accessed via close, its state

is changed to 𝑠file
3

. Then it is left unaccessed forever in the

desired state 𝑠file
3

.

Based on this observation, we introduce timers to the

type representation of resources as a technical device to

guarantee the progressivity of resource states towards the

desired states. Specifically, our temporal resource types take
the form ResmΨ accompanied by a timer m, which is a natural

number, and a usage prophecy Ψ. An initial timer is assigned

to each resource when it is created by newm
Ψ . Because, as seen

above, recursive functions are the source of infinite usage of

resources that obfuscates the progressivity guarantee, timers

cooperate with recursive function calls. Once a resource of

a type ResmΨ is passed to a recursive function, the value of

the timer m is decreased—namely, the timer represents the

“potential” of how many times the resource can be passed to

recursive computations. The timer is nonnegative. Therefore,

it disallows the resource to be passed to recursive functions

infinitely many times. This mechanism enables rejecting the

problematic example e1 as it passes the resource x to the

recursive function infinitely. In contrast, in the example e2,
each created resource is passed to the recursive function only

twice and then reaches the desired state. Therefore, we can

assign a inital timer of 2 to these resources.

However, an ever-decreasing timer forbids resources to be

used infinitely. For example, consider the following program
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with lock resources:

e3 def

=
let f = (rec f x . accacquire (x); accrelease (x); f x) in
let x = newm

Ψlock
in f x .

This program acquires and releases the lock infinitely, which

is allowed by the lock temporal specification, even though

the resource x is passed to the recursive function infinitely.

Our idea to address this issue is that, since we introduce

timers to ensure that resources reach certain desired states,

we can allow resetting the timer when a resource is in a desired
state. Consider the automaton for lock specification Ψlock:

𝑠lock
1

start 𝑠lock
2

acquire

release

It illustrates that the timer of a lock resource can be reset if

it has not been accessed yet or the last operation applied to

it is release. For a resource v in a desired state,
1
we allow

applying a reset construct resetm (v), which resets the timer

of the resource v to a new timer m. Using this mechanism,

we can rewrite the example e3 to the following e′3, which our

type system accepts:

e′
3

def

=
let f = (rec f x . ebody) in
let x = new1

Ψlock
in f x

ebody
def

= accacquire (x); accrelease (x); reset1 (x); f x .

The initial and reset timer is 1, indicating the lock resource

reaches the desired state 𝑠lock
1

for each recursive call.

3.3 Termination Analysis
The progressivity guarantee ensures resources that are used

infinitely—i.e., being passed to recursive functions infinitely—

reach the desired states eventually. However, another pos-

sibility for the use of infinite-lifetime resources is that they

can be left unused in a divergent sub-computation. We call

this phenomenon implicit discarding of resources. Consider

the function v given below (econd is unspecified):

v def

= rec f n. if0 econd then () else e
e def

= let y = eopen·read in f (n − 1); eclose
eopen·read

def

= let y = new0

Ψfile
in accopen (y); accread (y)

eclose
def

= accclose (y); drop(y) .
Termination behavior of the application of the function v

depends on the expression econd. If econd
def

= n ≥ 0, the

function call might diverge. In these cases, the resource y

will not be closed. On the other hand, if econd
def

= n ≤ 0, the

function call always terminates. In this case, every created

file resource y reaches the desired state 𝑠file
3

.

1
Our type system tracks the current state of a resource by the usage

prophecy Ψ in its type.

This example shows the importance of termination anal-

ysis in detecting implicit discarding. A sound type system

must ensure that unused resources have reached the de-

sired states just before the execution of a divergent sub-

computation starts. Although assuming that recursive func-

tion calls always diverge enables sound reasoning, it is often

too conservative. Termination analysis is a fundamental prob-

lem in computer science and has been extensively studied

for decades. Rather than incorporating some specific ter-

mination analysis method into the type system, we assume
that programs are annotated to indicate whether expressions

terminate (e.g., we write rec f x . e for always terminating

recursive functions) and propagate the information as a ter-
mination effect in computation types.

4 Type System
In this section, we first present simplified versions of our type

syntax and typing rules, and then present typing examples

to illustrate how our type system works. We have proven

the soundness of a full version of our type system but we

omit the details here.

4.1 Type Syntax
We present an excerpt of our type syntax:

Value Types 𝑇 ::= . . . | ResmΨ
Comp. Types 𝐶 ::= 𝑇 & 𝜁

Termination Effects 𝜁 ::=  | ?
Finite Trace Sets 𝑠 ⊆ A∗

Finite Spec. 𝜙 ::= 𝑠

Infinite Spec. 𝜓 ::= {𝜌1, . . . , 𝜌n}
Lassos 𝜌 ::= ⟨𝑠init, 𝑠rep⟩
Temporal Specifications / Usage Prophecies

Ψ ::= ⟨𝜙,𝜓 ⟩

The syntax of types consists of value types𝑇 and computation
types 𝐶 , which are used to type values and expressions, re-

spectively. As discussed in Section 3.2, the type of resources

is ResmΨ , containing a timer m and a usage prophecy Ψ. A
computation type is composed of a value type 𝑇 and a ter-
mination effect 𝜁 , which describes the values produced by

the expressions (if any) and their termination behavior, re-

spectively. A temporal specification (used in newm
Ψ ) or usage

prophecy (used in ResmΨ ) is a pair of a finite specification 𝜙 and

an infinite specification𝜓 . A finite specification 𝜙 is a finite

trace set 𝑠 , determining the finite usage of a resource: when

the resource is explicitly discarded by drop or implicitly dis-

carded, its history trace should be in the set 𝑠 . In contrast,

an infinite specification 𝜓 determines the infinite usage of

a resource: if a resource remains accessible forever in an

infinite execution, the limit of its history traces should be in

the interpretation of𝜓 . In general,𝜓 is a finite set of the form

{⟨𝑠11, 𝑠12⟩, · · · , ⟨𝑠n1, 𝑠n2⟩}, where each pair ⟨𝑠i1, 𝑠i2⟩ is called
a lasso. Their interpretation is formulated as below.
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Definition 4.1 (Interpretations of Temporal Specifications).
The interpretation of a temporal specification Ψ, infinite
specification𝜓 , and lasso 𝜌 is defined as:

J⟨𝜙,𝜓 ⟩K def

= 𝜙 ∪ J𝜓K J𝜓K def

=
⋃
𝜌 ∈𝜓

J𝜌K J⟨𝑠1, 𝑠2⟩K
def

= 𝑠1 · 𝑠∞2

where 𝑠∞
def

= {𝜛0 · 𝜛1 · . . . | ∀ i ∈ N. 𝜛i ∈ 𝑠} ⊆ A∞
and

𝑠 · 𝑆 def

= {𝜛 · 𝛿 | 𝜛 ∈ 𝑠 ∧ 𝛿 ∈ 𝑆}.

Namely, a trace in J𝜓K is a finite trace in 𝑠i1 followed by

infinite repetitions of traces in 𝑠i2 for some lasso ⟨𝑠i1, 𝑠i2⟩. We

adopt this form of infinite specifications because it is both

convenient and expressive. For convenience, it enables us

to easily identify “desired” states of the resource. We can

consider that a resource reaches a desired state if its history

trace is𝜛 · 𝜛1 · · · · · 𝜛m where𝜛 ∈ 𝑠i1 and𝜛1, · · · , 𝜛m ∈ 𝑠2i
for some lasso ⟨𝑠i1, 𝑠i2⟩ (𝑚 ≥ 0). By ensuring that the history

trace of the resource is evolved to 𝜛, 𝜛 · 𝜛1, 𝜛 · 𝜛1 · 𝜛2, · · ·
(again, 𝜛 ∈ 𝑠i1, and 𝜛1, 𝜛2, · · · ∈ 𝑠2i) over the course of

the execution, we can guarantee that the trace limit is in the

interpretation J𝜓K. For expressivity, this form of infinite spec-

ifications can express arbitrary 𝜔-regular expressions [11]

and 𝜔-context-free-grammars [5].

4.2 Typing Rules
We show simplified versions of the typing rules that are cru-

cial for the enforcement of progressiveness and the detection

of implicit discarding.

4.2.1 Consumption of Usage Prophecy. To understand

how usage prophecy in temporal resource types works, we

present the typing rule for resource access:

Γ ⊢ v : ResmΨ ⊢WF ResmΨ−a

Γ ⊢ acca (v) : ResmΨ−a & 
C_Acc

where Ψ−a
consumes the finite specification as well as the

initial part of the lassos in the infinite specification, remov-

ing the raised event a from the usage prophecy. The well-

formedness premise ⊢WF ResmΨ−a ensures the access is safe,

i.e., it leaves a non-empty usage prophecy for future usage.

4.2.2 Timer Count-Down. In a first-order setting,
2
the

timer of a resource is decreased whenever it is passed to a

recursive function call, giving rise to a derived typing rule

for recursive functions:

Γ! ⊎ {f : 𝑇1 ⊸ 𝑇2 & 𝜁 } ⊎ {x : 𝑇1
−1} ⊢ e : 𝑇2 & 𝜁

Γ! ⊢ rec𝜁 f x . e : 𝑇1 ⊸ 𝑇2 & 𝜁
T_Rec

where the count-down operation 𝑇 −1
decreases timers of

all temporal resource types in 𝑇 by 1. The typing context Γ!

is assumed to capture no resources for conforming to the

2
In a higher-order setting, i.e., functions may take and return functions,

more sophisticated typing techniques are needed to handle timer decrement

correctly. This is done in the full version of our type system.

uniqueness typing discipline (because recursive functions

can be recursively applied multiple times).

4.2.3 Timer Reset. Our typing rule for the reset construct
is as follows:

Γ ⊢ v : Resm
′

⟨𝜙,𝜓 ⟩
𝜓 ′ = {⟨𝑠2, 𝑠2⟩ |⟨𝑠1, 𝑠2⟩ ∈ 𝜓 ∧ 𝜖 ∈ 𝑠1} ≠ ∅

Γ ⊢ resetm (v) : Resm⟨𝜙,𝜓 ′ ⟩ & 
C_Reset

Note that the return type has a renewed timer of m instead

of m′
. Also, the second premise filters the lassos that have

reached a desired state (by checking the initial part of the

lasso contains the empty trace); it produces a new infinite

specification with the repeated part of these lassos copied

to the initial part. The new infinite specification must be

non-empty, meaning at least one lasso is "realizable".

4.2.4 Discarding of Resources. The typing rule for the
drop construct checks that the discarded resources have been
used up correctly (by checking the finite specification in

usage prophecy contains the empty trace). This check is also

performed when implicit discarding happens, handled in the

typing rule for the let-expressions:

Γ1 ⊢ e1 : 𝑇1 & 𝜁1

Γ2 ⊎ {x : 𝑇1} ⊢ e2 : 𝑇2 & 𝜁2 𝜁1 = ? =⇒⊢† Γ2
Γ1 ⊎ Γ2 ⊢ let x = e1 in e2 : 𝑇2 & 𝜁1 ⊲ 𝜁2

C_Let

where 𝜁1 ⊲𝜁2 is sequential composition of termination effects.

Notably, the premise 𝜁1 = ? =⇒⊢† Γ2 ensures unused re-

sources have been correctly used upwhen implicit discarding

happens.

4.3 Typing Examples
Example 4.2 (Well-Typed Example). The example program

e′
3
in Section 3.2 is well-typed in our type system with the

following temporal specification:

Ψlock
def

= ⟨𝑠lock∗, {⟨𝑠lock, 𝑠lock⟩}⟩
𝑠lock

def

= {acquire · release} .

Example 4.3 (Ill-Typed Example). This ill-typed example

illustrates the detection of invalid implicit discarding.

einvalid
def

= let f = (rec? f x . ebody) in f ()
where (we reuse eopen·read and eclose defined in Section 3.3)

ebody
def

= let y = eopen·read in let () = f x in eclose
Ψfile

def

= ⟨{open} · {read, write}∗ · {close}, ∅⟩ .
This function body will not type check. The issue is in type

checking the sequential composition of let () = f x in eclose.
The resource bound to y is not closed when the divergent

computation of f x happens, hence invalid implicit discard-

ing of resources occurs. This is detected by the typing rule

for let-expressions.
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