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1 Introduction

Programs use a variety of resources—such as heap memory,
files, network sockets, and locks. These resources are stateful
objects that must be used in a valid manner. For example,
a file handle must be opened before reading from or writ-
ing to it and a memory block may be freed at most once.
These requirements are safety properties, which require that
resource operations are applied to resources in some appro-
priate states. The task of verifying safety of resource usage
is called the resource usage analysis problem [9] and has been
studied actively for decades [1, 4, 7-9, 12, 14].

However, safety is not the only aspect of correct use of re-
sources: the other aspect is liveness, which requires resources
to eventually reach some desired states. For example, con-
sider the program below, which is an interactive file logger:

1 let rec main_loop log_lock =

2 let path = input () in

3 if path = "EXIT" then () else (

4 let input_file = open path in

5 let content = read input_file in
6 close input_file;

7 acquire log_lock;

8 ... (x write content to a log x)
9 release log_lock;

10 main_loop log_lock)

11 let main () =
12 let log_lock = new_lock () in
main_loop log_lock

The program may run indefinitely (it terminates only when
the user types "EXIT"). For such a potentially diverging pro-
gram to be correct, it is desirable to ensure liveness properties
of resources it creates—the opened files should eventually
be closed to avoid resource leaks, and a lock that has been
acquired should eventually be released so that other threads
can enter the critical sections.

In this short paper, we focus on the problem of verifying
temporal properties of resource usage. We call this problem
temporal resource usage analysis, extending resource usage
analysis [9, 10] with consideration of liveness properties.
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2 Language Ayes

Variables x, f Locations ¢ Events a Integers n
Values va=x|n|()|rest|recfx.e
Expressions e :=v | v; v, | newy | accy(v) | drop(v)

| letx =ejine, | if0 vthene; else e,

Our language A, is a call-by-value A-calculus extended with
resource operations. Resources res £ are created by new,,
where ¥ is some syntax (made abstract for now) for a user-
assigned temporal specification. It prescribes a set of valid
full usage traces of the allocated resource, which we call the
usage specification and denote by [¥]. For example, using a
mixed form of regular and w-regular expressions, temporal
specifications of files and locks may be specified as:

def o
Yeie = open-(read|write)*-close

def

Yok = (acquire-release)” | (acquire - release)® .

A resource access acc,(v) takes a resource v and an event
a, which is a symbolic name of a certain resource operation,
such as open and close for files. A deallocation construct
drop(v) discards all resources accessible from the value v.

Semantically, each resource accumulates accessed events
as a history trace in the resource heap. When allocated, a
resource is associated with the empty trace; and every time
an access accq(res ?) is performed, the event a is appended
to the trace of res ¢ and this updated trace is checked to be a
prefix of some trace in the usage specification; and when a
resource is explicitly discarded by drop(v), the history trace
must conform to the usage specification of the resource.

Crucially, whereas safety of resource usage can be checked
by inspecting the prefixes of the full trace, liveness requires
checking that the full trace exactly matches some trace in
the usage specification to ensure desired events are eventu-
ally accessed [2]. For this reason, temporal resource usage
analysis requires that resources staying in the resource heap
infinitely (we call these infinite-lifetime resources) during a
divergent execution must have an evolution of history traces
whose limit trace conforms to the usage specification. For
example, consider the following program:

o let f = (rec f x. acCread(x); f x) in
T letx = newy, inaccopen(x);f x .

This program first creates and opens a file and then passes it
to the recursive function f, which continues to read the file
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infinitely. The history traces of the file resource evolve as
€, open, open - read, open - read?, open - read®, ---

and have a limit infinite trace open-read® ¢ [¥si1e] as it vio-
lates the requirement that close must eventually be applied.
This liveness violation cannot be detected by inspecting the
prefixes without reasoning about the full trace.

3 Overview

We identify the key challenges in type-based temporal re-
source usage analysis and present our ideas to address them.

3.1 Alias Tracking

Common to prior work on resource usage analysis [4, 10, 12]
is that (1) the types of resources are enriched with usage in-
formation that encodes the current state of the resource, and
(2) substructural typing techniques, e.g., linear, uniqueness,
or ordered typing, are applied to support strong update of
statically tracked resource states.

For the former, we similarly introduce resource types of
the form Res,, that reuse the syntax of temporal specifica-
tions to encode the allowed future usage of the resource. We
call these ¥ usage prophecies. For example, after an open
event, the usage prophecy for a file resource can be updated

from ¥rite to Yopened def (read | write)* - close.

For the latter, among various established approaches, we
adopt uniqueness typing [3, 6, 13] due to its simplicity and
generality. Our use of uniqueness typing guarantees each
resource has a unique reference, facilitating sound strong
update of usage prophecies.

3.2 Progressivity Guarantee

Uniqueness typing alone is insufficient for verifying liveness
of infinite-lifetime resources when programs diverge. Recall
the program e; given in Section 2. It does not satisfy the
temporal specification for files because the created file is
never closed. The crux of the problem is that the resource’s
state does not progress even though the infinite execution of
the program does. To see this in more detail, consider the
finite automaton representation of the file specification:

read,write

open close
start

In the program ey, the state of the created file at the point
immediately before the recursive call is s; ile and it is then
stuck in this non-accepting state: the resource enters sg ile
again and again with a self-loop.

Our rationale for identifying unprogressiveness as prob-
lematic is that it hinders ensuring that the resources reach

certain desired states, namely, the accepting states in the
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automaton representations of their specifications (e.g., s3f ile
above for files). At its core, liveness requires that a resource
eventually reach a desired state: either the resource should
be left unaccessed forever in a desired state, or, over the
course of the execution, it should visit the desired states
infinitely such that the limit of the history traces at these
states matches some trace in the usage specification. Thus,
the lack of the progressivity guarantee makes it difficult to
ensure liveness requirements are met.

Conversely, by ensuring that the states of resources progress
along with the execution, we can guarantee that they reach the
desired states. For example, consider the following program:

let f = (recf (x,Y). €poqy) in

e, Y et z1 =newy inletz; = newy in
1 1
aCCopen(ZZ)if (ZL 22)
def accopen(x)§accclose()/)§
€hody =

letz = newy inf(z,x).

This program first creates two file resources z; and z; and
then calls the recursive function f with them. The states
of the resources passed to f progress towards sg ile along
with the execution—specifically, every time the function f
is recursively called. For the first argument resource x, its
state at the time of the call is supposed to be slﬁle. Since it
is accessed via open, its state is changed to s;ile. Finally, it
is passed to the recursive call as the second argument. For
the second argument y, its state at the time of the call is
supposed to be sgile. Since it is accessed via close, its state
is changed to sg ile Then it is left unaccessed forever in the
desired state sgile.

Based on this observation, we introduce timers to the
type representation of resources as a technical device to
guarantee the progressivity of resource states towards the
desired states. Specifically, our temporal resource types take
the form Resy accompanied by a timer m, which is a natural
number, and a usage prophecy ¥. An initial timer is assigned
to each resource when it is created by new(I,". Because, as seen
above, recursive functions are the source of infinite usage of
resources that obfuscates the progressivity guarantee, timers
cooperate with recursive function calls. Once a resource of
a type Resy is passed to a recursive function, the value of
the timer m is decreased—namely, the timer represents the
“potential” of how many times the resource can be passed to
recursive computations. The timer is nonnegative. Therefore,
it disallows the resource to be passed to recursive functions
infinitely many times. This mechanism enables rejecting the
problematic example e; as it passes the resource x to the
recursive function infinitely. In contrast, in the example e,
each created resource is passed to the recursive function only
twice and then reaches the desired state. Therefore, we can
assign a inital timer of 2 to these resources.

However, an ever-decreasing timer forbids resources to be
used infinitely. For example, consider the following program
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with lock resources:

e def let f = (rec f x. acCacquire (X); aCCrelease (X); f x) in
T letx= newg infx.

This program acquires and releases the lock infinitely, which
is allowed by the lock temporal specification, even though
the resource x is passed to the recursive function infinitely.
Our idea to address this issue is that, since we introduce
timers to ensure that resources reach certain desired states,
we can allow resetting the timer when a resource is in a desired
state. Consider the automaton for lock specification ¥14ck:

start *>

It illustrates that the timer of a lock resource can be reset if
it has not been accessed yet or the last operation applied to
it is release. For a resource v in a desired state,! we allow
applying a reset construct reset™(v), which resets the timer
of the resource v to a new timer m. Using this mechanism,
we can rewrite the example e; to the following e;, which our
type system accepts:

acquire

release

¢ def letf = (reclfx. ?body) in

let x = newy, infx
aCCacquire (x); acCrelease (X); reset! (x)§f X.
The initial and reset timer is 1, indicating the lock resource

reaches the desired state s%“k for each recursive call.

def
€hody =

3.3 Termination Analysis

The progressivity guarantee ensures resources that are used
infinitely—i.e., being passed to recursive functions infinitely—
reach the desired states eventually. However, another pos-
sibility for the use of infinite-lifetime resources is that they
can be left unused in a divergent sub-computation. We call
this phenomenon implicit discarding of resources. Consider
the function v given below (econg is unspecified):

def .

v = rec f n. if0 econg then () else e
def .

e = let Y = €open-read mf (n—1); eclose
def 0 .

€open-read = let y= new‘f’ﬁle n accopen(y)§ accread(J/)
def
€close = aCCclose(y);drop(y) .

Termination behavior of the application of the function v

. def
depends on the expression e.ond. If €cond = n > 0, the
function call might diverge. In these cases, the resource y

will not be closed. On the other hand, if e.qnq def n < 0, the

function call always terminates. In this case, every created
file resource y reaches the desired state s,g ile,

10ur type system tracks the current state of a resource by the usage
prophecy ¥ in its type.

This example shows the importance of termination anal-
ysis in detecting implicit discarding. A sound type system
must ensure that unused resources have reached the de-
sired states just before the execution of a divergent sub-
computation starts. Although assuming that recursive func-
tion calls always diverge enables sound reasoning, it is often
too conservative. Termination analysis is a fundamental prob-
lem in computer science and has been extensively studied
for decades. Rather than incorporating some specific ter-
mination analysis method into the type system, we assume
that programs are annotated to indicate whether expressions
terminate (e.g., we write rec? f x. e for always terminating
recursive functions) and propagate the information as a ter-
mination effect in computation types.

4 Type System
In this section, we first present simplified versions of our type
syntax and typing rules, and then present typing examples
to illustrate how our type system works. We have proven
the soundness of a full version of our type system but we
omit the details here.

4.1 Type Syntax

We present an excerpt of our type syntax:

Value Types T == ...|Resy
Comp. Types C u= T&¢
Termination Effects ¢ := 4 |?

Finite Trace Sets s < A7

Finite Spec. ¢ u= s

Infinite Spec. v ou= {p1, ..., pnt
Lassos P == {Sinits Srep)

Temporal Specifications / Usage Prophecies

¥ ou= (dY)

The syntax of types consists of value types T and computation
types C, which are used to type values and expressions, re-
spectively. As discussed in Section 3.2, the type of resources
is Resy, containing a timer m and a usage prophecy ¥. A
computation type is composed of a value type T and a ter-
mination effect {, which describes the values produced by
the expressions (if any) and their termination behavior, re-
spectively. A temporal specification (used in newy) or usage
prophecy (used in Resy) is a pair of a finite specification ¢ and
an infinite specification . A finite specification ¢ is a finite
trace set s, determining the finite usage of a resource: when
the resource is explicitly discarded by drop or implicitly dis-
carded, its history trace should be in the set s. In contrast,
an infinite specification ¢/ determines the infinite usage of
a resource: if a resource remains accessible forever in an
infinite execution, the limit of its history traces should be in
the interpretation of 1. In general, ¢ is a finite set of the form
{{s11,$12)5 - = - » {Sn1, Sn2) }, where each pair (s;;, siz) is called
a lasso. Their interpretation is formulated as below.



Definition 4.1 (Interpretations of Temporal Specifications).
The interpretation of a temporal specification ¥, infinite
specification i, and lasso p is defined as:

KenI Zoulyl W= Il Ksusl = siesy
PEY
where s® < {@g-@;-...|Vie N o € s} € A® and

s S . 5loesnses).

Namely, a trace in [i/] is a finite trace in s;; followed by
infinite repetitions of traces in s;, for some lasso (s;1, s;2). We
adopt this form of infinite specifications because it is both
convenient and expressive. For convenience, it enables us
to easily identify “desired” states of the resource. We can
consider that a resource reaches a desired state if its history
traceis@ - @1 - -+ - @, where ® € sjyand @1, -+, @, € Sy
for some lasso (s, siz) (m > 0). By ensuring that the history
trace of the resource is evolved to @, @ - @1, @ - @1 - @g, * * *
(again, @ € sj, and @1, @,, -+ € $y;) over the course of
the execution, we can guarantee that the trace limit is in the
interpretation [[/]. For expressivity, this form of infinite spec-
ifications can express arbitrary w-regular expressions [11]
and w-context-free-grammars [5].

4.2 Typing Rules

We show simplified versions of the typing rules that are cru-
cial for the enforcement of progressiveness and the detection
of implicit discarding.

4.2.1 Consumption of Usage Prophecy. To understand
how usage prophecy in temporal resource types works, we
present the typing rule for resource access:

. m
I'+ v:Resy

T+ accg(v) : Resg-, & 4

FWF Resg,",a

C_Acc

where ¥~¢ consumes the finite specification as well as the
initial part of the lassos in the infinite specification, remov-
ing the raised event a from the usage prophecy. The well-
formedness premise Fwr Resy_, ensures the access is safe,
i.e., it leaves a non-empty usage prophecy for future usage.

4.2.2 Timer Count-Down. In a first-order setting,’ the
timer of a resource is decreased whenever it is passed to a
recursive function call, giving rise to a derived typing rule
for recursive functions:

r’w{f:Tl—oTz&g}w{x:Tl—l}ke:Tz&gT

! 7 Rec
I"'rrec®* fx.e:Th o T, &¢

where the count-down operation T~! decreases timers of
all temporal resource types in T by 1. The typing context I
is assumed to capture no resources for conforming to the

’Ina higher-order setting, i.e., functions may take and return functions,
more sophisticated typing techniques are needed to handle timer decrement
correctly. This is done in the full version of our type system.
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uniqueness typing discipline (because recursive functions
can be recursively applied multiple times).

4.2.3 Timer Reset. Our typing rule for the reset construct
is as follows:

I‘I—\/:Res?(‘;;,l//>
Y= {(s2.82) [{s1,%2) €y ANe€si} =0

T+ reset™(v) : Resww,) & 4

Note that the return type has a renewed timer of m instead
of m’. Also, the second premise filters the lassos that have
reached a desired state (by checking the initial part of the
lasso contains the empty trace); it produces a new infinite
specification with the repeated part of these lassos copied
to the initial part. The new infinite specification must be
non-empty, meaning at least one lasso is "realizable".

C_RESET

4.2.4 Discarding of Resources. The typing rule for the
drop construct checks that the discarded resources have been
used up correctly (by checking the finite specification in
usage prophecy contains the empty trace). This check is also
performed when implicit discarding happens, handled in the
typing rule for the let-expressions:

Fll—elle&gvl
rzL*'){XZTl}I-EziTz&é/z
Flk’dl“zl—letxzelineg:Tz&§1>§2

é/l = ?ZN—T rz

C LT

where {7 > { is sequential composition of termination effects.
Notably, the premise {; = ? =" I} ensures unused re-
sources have been correctly used up when implicit discarding

happens.

4.3 Typing Examples

Example 4.2 (Well-Typed Example). The example program
e; in Section 3.2 is well-typed in our type system with the
following temporal specification:

<slock*s {<Slock: Slock>}>

{acquire - release} .

def

Wlock =

def

Slock =

Example 4.3 (Ill-Typed Example). This ill-typed example
illustrates the detection of invalid implicit discarding.

def .
einvalid = letf = (rec’ fx. €hody) INf ()

where (We reuse egpen.read and eciose defined in Section 3.3)

let y = eopen-read inlet () = f xin eciose
({open} - {read,write}” - {close}, 0) .

def

€hody =
def

Prile =

This function body will not type check. The issue is in type
checking the sequential composition of let () = f xin ecose-
The resource bound to y is not closed when the divergent
computation of f x happens, hence invalid implicit discard-
ing of resources occurs. This is detected by the typing rule
for let-expressions.
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